Доказательство теоремы: "Формула для цуг из составных событий, образующих случайную бинарную последовательность"
Приведены формулы, устанавливающие связь между цугами и составными событиями бинарной последовательности. Доказана теорема: "Формула для цуг из составных событий", что переводит комбинаторику длинных последовательностей на физико-математический уровень.
Подобные документы
Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012Биография Пифагора. Неалгебраические доказательства теоремы. Древнекитайское, древнеиндийское доказательство. Доказательство Евклида. Алгебраические доказательства теоремы. Первое и второе доказательство. Определение косинуса угла. Головоломка "Пифагор".
реферат, добавлен 30.01.2016Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Биография П. Ферма и его вклад в развитие новых отраслей математического анализа, аналитической геометрии и теории вероятностей. История Большой теоремы Ферма. Доказательство леммы 1 (Жермен) и леммы 2 (вспомогательной). Доказательство теоремы Ферма.
реферат, добавлен 30.10.2010Понятие предела последовательности. Характерные примеры вычисления пределов последовательности с подробным разбором решения. Теорема Вейерштрасса и примеры её применения на практике. Вычисление искомого предела, не прибегая к вспомогательным неравенствам.
курсовая работа, добавлен 07.11.2013Доказательство Великой теоремы Ферма на основе соответствия эллиптических кривых и модулярных форм. Применение формулы бинома И. Ньютона. Преобразование уравнения в эквивалентное кубическое, где кривая, соответствующая уравнению, является эллиптической.
курсовая работа, добавлен 30.03.2017- 82. Теорема Бернулли
Доказательство математического выражения, позволяющего находить вероятность появления события при независимых испытаниях. Варианты применения теоремы Бернулли при решении практических задач. Расшифровка модуля вероятности отклонения частоты события.
краткое изложение, добавлен 12.04.2014 Исследование соотношения концепций понимания и доказательства в математической практике. Эпистемические требования при передоказательстве теоремы. Интерпретация вхождения семантического содержания в синтаксические структуры. Примёмы дедуктивного вывода.
статья, добавлен 23.09.2020Теория вероятности и математическая статистика. Основные категории: событие, вероятность, случайность. Теоремы сложения и умножения. Вероятность гипотез, формула Байеса. Независимые события. Биномиальное распределение. Редкие события, формула Пуассона.
методичка, добавлен 21.10.2010Понятие рекуррентной нерекуррентной формул. Некоторые свойства чисел последовательности Фибоначчи. Система счисления, основанная на числах Фибоначчи. Схема прибавления, принцип перехода к следующей последовательности. Числа Каталана, элементы массива.
презентация, добавлен 26.09.2017- 86. Теорема Пифагора
Рассмотрение древней и современной формулировок теоремы Пифагора, ее значение в математике. Изучение алгебраического, геометрического и евклидового доказательств теоремы о равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов.
презентация, добавлен 20.12.2011 Открытие теоремы Пифагором. Легенда о заклании быков Пифагором. Некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Биография Пифагора. Древнекитайское, древнеиндийское, а также алгебраические доказательства теоремы.
реферат, добавлен 14.12.2012Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).
презентация, добавлен 21.03.2014Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.
контрольная работа, добавлен 20.12.2011Доказывание теоремы признаков дифференцируемости обобщенной производной Шварца, в отличие от функций, дифференцируемых по Ньютону. Исследование существований левой и правой производных. Суть формулы Лагранжа конечных приращений классического анализа.
статья, добавлен 20.05.2018- 92. Теория Фалеса
Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.
презентация, добавлен 01.02.2016 Ознакомление с формулами Каца–Вейля и функциями Холла–Литтлвуда. Рассмотрение многогранников Гельфанда–Цетлина. Формульное выражение многочленов. Моделирование аффинных функций. Доказательство соответствия между гранями и подграфами многоугольников.
диссертация, добавлен 28.12.2016Соотношение между числами ряда Фибоначчи, принцип образования этого ряда. Соотношение между числами Sn-2d, Sn-1 и Snx. Применение иррациональных чисел для обращения в нуль разности между площадями прямоугольника и квадрата. Доказательство формулы Бине.
реферат, добавлен 13.07.2015Порядок расчета вероятностей событий с использованием классической формулы. Процесс решение задач для выражения события В через все события А. Определение вероятности того что взятая деталь окажется стандартной. Использование формулы Бейеса и Пуассона.
контрольная работа, добавлен 13.02.2013- 96. Теорема Пифагора
Первые учителя Пифагора. Учреждение пифагорейской школы. Идеалистическое учение в античной философии. Числа у пифагорейцев. Открытие теоремы Пифагором. Классические доказательства теоремы Пифагора. Математические трактаты Древнего Китая и Древней Индии.
реферат, добавлен 09.12.2011 Пространство элементарных событий как совокупность возможных неблагоприятных событий, способных нанести некоторую степень ущерба исследуемому объекту. Анализ математических подходов к оценке вероятности проявления негативных событий в окружающей среде.
статья, добавлен 29.11.2018Описание доказательства теоремы Хоукинга, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Особенности этапов решения данной теоремы путем разложения прямоугольного треугольника на два равнобедренных.
задача, добавлен 23.02.2011Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.
контрольная работа, добавлен 06.11.2012Моделирование вещественных параметров вычисления формулы золотого сечения, в случаях невозможности применения математической модели, удовлетворяющей описание прикладных задач. Исчисление поправочных коэффициентов в уравнении пропорции двух величин.
статья, добавлен 28.10.2015