Нейросетевые методы анализа и прогнозирования финансовых рынков
Оценка механизма формирования спроса, предложения, биржевой цены на фондовом рынке. Выбор структуры модели искусственной нейронной сети прямого распространения для эффективного решения класса задач анализа, прогнозирования финансовых временных рядов.
Подобные документы
Изучение работы перцептрона для решения задачи распознавания символов. Выбор и обоснование структуры нейронной сети. Возможность улучшения свойств обобщения путем наращивания ее структуры. Анализ работы перцептрона при распознавании двух, четырех букв.
статья, добавлен 14.07.2016Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.
статья, добавлен 26.04.2019- 79. Анализ и исследование методов и алгоритмов прогнозирования многомерных временных последовательностей
Анализ способов повышения эффективности прогнозирования временных последовательностей с использованием регрессионного моделирования. Процедуры преобразования и чистки данных, импортированных из исходного хранилища. Основные преимущества системы ProSmart.
статья, добавлен 10.03.2019 Метод градиентного спуска. Решение задач оптимизации. Геометрическая интерпретация метода градиентного спуска с постоянным шагом. Критерии остановки процесса приближенного нахождения минимума. Выбор оптимального шага. Градиентный метод с дроблением шага.
реферат, добавлен 17.07.2013- 81. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 MATLAB как пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Создание нейронной сети в графическом интерфейсе. Экспортирование созданной нейронной сети в рабочую область.
контрольная работа, добавлен 30.05.2016Параметризация свёрточной нейронной сети для осуществления семантического анализа текста и определения его эмоциональной окраски. Архитектура сети, её обучение и тестирование с использованием объектно-ориентированного языка Python и библиотеки Keras.
статья, добавлен 19.02.2019Формирование в информационных системах алгоритмов анализа и синтеза для измерения, моделирования и управления динамическими системами. Рассмотрение методов линейной и нелинейной фильтрации, интерполирования и прогнозирования статистических решений.
учебное пособие, добавлен 28.12.2013- 85. Разработка моделей для прогнозирования и анализа данных с применением пакета программ STATISTICA
Анализ методов и технологий Data Mining. Применение искусственных нейронных сетей. Освоение среды Data Miner и разработка моделей анализа данных с применением программ STATISTICA. Анализ результатов применения моделей прогнозирования и анализа данных.
дипломная работа, добавлен 14.12.2019 На базе информации о векторе состояния нелинейной модели и его производной формирование статической нейронной сети, аппроксимирующей правую часть уравнений динамики. Линеаризация сети, в результате которой определение коэффициентов линейной модели судна.
статья, добавлен 28.10.2018Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Изучение актуальных проблем поиска релевантной информации по запросу пользователя в сети Интернет на базе информационной среды WWW (World Wide Web). Характеристика основных способов их решения на основе нейросетевых методов для конкретного пользователя.
статья, добавлен 17.01.2018Задачи, которые решают нейронные сети. Кластеризация и визуализация данных. Прогнозирование временных рядов и оценивание рисков. Иллюстрации применения технологий информационного моделирования. Нейросетевые обучающиеся машины. Аппроксимация данных.
лекция, добавлен 08.02.2013Оценка прогностической значимости распространенных нейросетевых моделей для анализа ценностных составляющих приема участкового врача-терапевта. Модели на базе многослойного персептрона, радиально-базисной функции и обобщенно-регрессионной нейронной сети.
статья, добавлен 08.04.2022Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024- 92. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 - 93. Взгляд на архитектуру и требования к нейроимитатору для решения современных индустриальных задач
Нейросетевые методы анализа и обработки данных в современной практике, основные преимущества данных сетей. Методологические вопросы нейромоделирования. Основные ритуалы нейросетевой обработки данных. Гибридное программное обеспечение, его положения.
статья, добавлен 08.02.2013 Прогнозирование временных рядов, отражающих количественные данные о заказах, сделанных клиентами системы массового обслуживания. Оценка распределения трудовой нагрузки персонала. Модель авторегрессии – скользящего среднего AR(I)MA. Программная реализация.
дипломная работа, добавлен 21.09.2019- 95. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Особенность подготовки данных для обучения сети. Главный анализ формирования обучающих массивов в задаче. Вычисление суммы квадратичных отклонений выходов паутины от эталонов. Основная характеристика проведения результатов регрессионного анализа.
лабораторная работа, добавлен 14.01.2015Рассмотрение на сегменте фондового рынка технологии и методики применения системно-когнитивного анализа и его инструментария – системы "Эйдос". Опсание когнитивной структуризации и формализации предметной области с целью моделирования временных рядов.
статья, добавлен 26.04.2017Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Разработка аналитической модели оценки живучести сетевых информационных систем (СИС), имеющих сложную (гибридную) топологию и большую размерность на основе модели искусственной нейронной сети. Структура информационной системы оценки живучести СИС.
автореферат, добавлен 01.09.2018Сравнение статистики, машинного обучения и Data Mining, методы ее применяемые для решения задач классификации, способы классификации и прогнозирования в процессе решения бизнес-задач, прикладное программное обеспечение для работы с нейронными сетями.
книга, добавлен 09.09.2012