Уравнения парной регрессии
Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
Подобные документы
Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.
практическая работа, добавлен 31.10.2014Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.
лекция, добавлен 10.10.2014Построение поля корреляции, уравнения линейной и степенной парной регрессии. Расчет значения спроса, его квадратичного отклонения и коэффициентов автокорреляции. Выполнение сглаживания временного ряда методом скользящих средних с интервалом сглаживания.
контрольная работа, добавлен 30.12.2010Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.
реферат, добавлен 20.05.2013Расчет числовых характеристик выборочного распределения. Построение вариационного ряда и расчёты с использование электронных таблиц. Задача практического применения дисперсного анализа, парной линейной и нелинейной, а так же множественной регрессии.
контрольная работа, добавлен 11.04.2016Критические значения коэффициента парной корреляции. Планирование многофакторного эксперимента. Проверка однородности дисперсии и равноточности измерения в разных сериях. Показатели уравнения регрессии. Методы рациональной организации исследований.
курсовая работа, добавлен 24.02.2014Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
презентация, добавлен 23.04.2015Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.
презентация, добавлен 18.12.2012Анализ исходных динамических рядов, их исследование на непрерывность. Количественное изменение тесноты связи признака-функции и признаков-факторов методом парной корреляции. Расчет показателей вариации. Построение уравнения множественной регрессии.
курсовая работа, добавлен 22.10.2017Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.
контрольная работа, добавлен 09.07.2011Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".
статья, добавлен 03.11.2015Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.
контрольная работа, добавлен 17.05.2019Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.
презентация, добавлен 15.12.2014Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.
курсовая работа, добавлен 13.10.2017Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.
контрольная работа, добавлен 11.04.2015Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.
курсовая работа, добавлен 19.06.2015Рассмотрение задачи оценки параметров нелинейной регрессии при отсутствии априорной информации о линейно входящих параметрах. Проблема обеспечения оценивания параметров сходимости алгоритма за приемлемое количество итераций в нелинейных задачах.
статья, добавлен 25.02.2013Дисперсионный анализ в математической статистике как самостоятельный инструмент статистического анализа, его понятие и применение в эконометрике как вспомогательного средства для изучения качества регрессионной модели. Линейный коэффициент корреляции.
лекция, добавлен 25.04.2015Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.
лабораторная работа, добавлен 01.11.2023Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.
курс лекций, добавлен 27.10.2015Определение зависимости одной физической величины от другой. Метод линейной парной регрессии как наилучший способ для воспроизведения искомой зависимости и решение задач по имеющимся экспериментальным точкам с помощью программного обеспечения Mathcad.
контрольная работа, добавлен 23.04.2014F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Составление сводной таблицы вычислений, выбор лучшей модели, интерпретация рассчитанных характеристик и индекса корреляции. Рассчет прогнозных значений результативного признака, при увеличении прогнозного значения фактора относительно среднего уровня.
задача, добавлен 06.08.2010Построение поля корреляции и формулирование гипотезы о форме связи. Расчет параметров уравнений линейной регрессии. Сравнительная оценка силы связи фактора с результатом с помощью среднего (общего) коэффициента эластичности. Средняя ошибка аппроксимации.
контрольная работа, добавлен 29.04.2015Ошибки коэффициентов уравнений регрессии, анализ остаточной дисперсии. Взаимокоррелирующие аргументы, выбор аргументов в уравнении регрессии при их взаимной корреляции в лесном хозяйстве. Зависимость высоты дерева от качества условий местопроизрастания.
реферат, добавлен 29.03.2018