Уравнения парной регрессии

Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.

Подобные документы

  • Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.

    практическая работа, добавлен 31.10.2014

  • Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.

    лекция, добавлен 10.10.2014

  • Построение поля корреляции, уравнения линейной и степенной парной регрессии. Расчет значения спроса, его квадратичного отклонения и коэффициентов автокорреляции. Выполнение сглаживания временного ряда методом скользящих средних с интервалом сглаживания.

    контрольная работа, добавлен 30.12.2010

  • Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.

    реферат, добавлен 20.05.2013

  • Расчет числовых характеристик выборочного распределения. Построение вариационного ряда и расчёты с использование электронных таблиц. Задача практического применения дисперсного анализа, парной линейной и нелинейной, а так же множественной регрессии.

    контрольная работа, добавлен 11.04.2016

  • Критические значения коэффициента парной корреляции. Планирование многофакторного эксперимента. Проверка однородности дисперсии и равноточности измерения в разных сериях. Показатели уравнения регрессии. Методы рациональной организации исследований.

    курсовая работа, добавлен 24.02.2014

  • Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.

    презентация, добавлен 23.04.2015

  • Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.

    презентация, добавлен 18.12.2012

  • Анализ исходных динамических рядов, их исследование на непрерывность. Количественное изменение тесноты связи признака-функции и признаков-факторов методом парной корреляции. Расчет показателей вариации. Построение уравнения множественной регрессии.

    курсовая работа, добавлен 22.10.2017

  • Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.

    контрольная работа, добавлен 09.07.2011

  • Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".

    статья, добавлен 03.11.2015

  • Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.

    контрольная работа, добавлен 17.05.2019

  • Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.

    презентация, добавлен 15.12.2014

  • Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.

    курсовая работа, добавлен 13.10.2017

  • Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.

    контрольная работа, добавлен 11.04.2015

  • Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.

    курсовая работа, добавлен 19.06.2015

  • Рассмотрение задачи оценки параметров нелинейной регрессии при отсутствии априорной информации о линейно входящих параметрах. Проблема обеспечения оценивания параметров сходимости алгоритма за приемлемое количество итераций в нелинейных задачах.

    статья, добавлен 25.02.2013

  • Дисперсионный анализ в математической статистике как самостоятельный инструмент статистического анализа, его понятие и применение в эконометрике как вспомогательного средства для изучения качества регрессионной модели. Линейный коэффициент корреляции.

    лекция, добавлен 25.04.2015

  • Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.

    лабораторная работа, добавлен 01.11.2023

  • Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.

    курс лекций, добавлен 27.10.2015

  • Определение зависимости одной физической величины от другой. Метод линейной парной регрессии как наилучший способ для воспроизведения искомой зависимости и решение задач по имеющимся экспериментальным точкам с помощью программного обеспечения Mathcad.

    контрольная работа, добавлен 23.04.2014

  • F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.

    презентация, добавлен 23.08.2016

  • Составление сводной таблицы вычислений, выбор лучшей модели, интерпретация рассчитанных характеристик и индекса корреляции. Рассчет прогнозных значений результативного признака, при увеличении прогнозного значения фактора относительно среднего уровня.

    задача, добавлен 06.08.2010

  • Построение поля корреляции и формулирование гипотезы о форме связи. Расчет параметров уравнений линейной регрессии. Сравнительная оценка силы связи фактора с результатом с помощью среднего (общего) коэффициента эластичности. Средняя ошибка аппроксимации.

    контрольная работа, добавлен 29.04.2015

  • Ошибки коэффициентов уравнений регрессии, анализ остаточной дисперсии. Взаимокоррелирующие аргументы, выбор аргументов в уравнении регрессии при их взаимной корреляции в лесном хозяйстве. Зависимость высоты дерева от качества условий местопроизрастания.

    реферат, добавлен 29.03.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.