Уравнения парной регрессии
Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
Подобные документы
Расчет линейного коэффициента парной корреляции, коэффициента детерминации и ошибки аппроксимации. Определение значимости параметров регрессии с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.
контрольная работа, добавлен 27.04.2017Построение уравнения парной регрессии с помощью программы Excel по данным, описывающим зависимость уровня рентабельности на предприятии от скорости товарооборота. Вычисление коэффициента эластичности и расчет ошибки аппроксимации линейной модели.
контрольная работа, добавлен 19.10.2016Определение параметров для составления линейного уравнения парной регрессии посредствам построения электронной таблицы Excel. Оценка качества построенной модели на основе коэффициента парной корреляции, детерминации и средней ошибки аппроксимации.
лабораторная работа, добавлен 30.03.2015Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
контрольная работа, добавлен 20.06.2012Анализ динамики роста стоимости основных рабочих фондов. Расчёт парного коэффициента корреляции. Проверка значимости с помощью статистики Стьюдента. Вычисление оценки неизвестных параметров уравнения парной регрессии по методу наименьших квадратов.
контрольная работа, добавлен 15.03.2017Общая характеристика графика модели парной регрессии. Знакомство с наиболее важными этапами расчета коэффициента детерминации. Рассмотрение основных способов построения степенной модели парной регрессии. Особенности проведения корреляционного анализа.
статья, добавлен 27.12.2020Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.
контрольная работа, добавлен 23.05.2015Рассмотрение метода взвешенных наименьших квадратов. Исследование случая парной регрессии. Нарушение гомоскедастичности и наличие автокорреляции остатков. Уравнение регрессии без свободного члена. Дисперсия результативного признака и остаточных величин.
презентация, добавлен 13.07.2015Уравнение парной регрессии. Система нормальных уравнений. Параметры уравнения регрессии. Показатель тесноты связи. Коэффициент эластичности. Ошибка аппроксимации и индекс корреляции. Поиск тесноты связи с помощью множественного коэффициента корреляции.
контрольная работа, добавлен 29.12.2011Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.
краткое изложение, добавлен 22.05.2010Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.
контрольная работа, добавлен 12.01.2015Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
презентация, добавлен 20.01.2015Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.
контрольная работа, добавлен 09.06.2015Ознакомление с линейным уравнением множественной регрессии. Определение и характеристика ошибки аппроксимации. Рассмотрение и анализ результатов сравнения коэффициентов частной и парной корреляции. Изучение уравнение степенной и линейной модели.
контрольная работа, добавлен 09.01.2017Регрессионный анализ - определение аналитического выражения связи, в котором изменение одной величины обусловлено влиянием одной или несколько независимых величин. Методы выбора математической модели в парной регрессии. Определение остатка для наблюдения.
реферат, добавлен 11.12.2017Рассчет линейного коэффициента парной корреляции и коэффициента детерминации. Оценка статистической значимости параметров регрессии и корреляции. Критерий Дарбина-Уотсона для проверки независимости остатков. Ошибка прогноза и его доверительный интервал.
контрольная работа, добавлен 28.05.2018Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.
контрольная работа, добавлен 26.06.2014Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.
лекция, добавлен 25.04.2015Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.
презентация, добавлен 05.06.2012Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Оценка коэффициентов парного уравнения регрессии. Анализ графиков, отражающих зависимости между результативным показателем и факторными признаками. Изображение эллипсов рассеяния. Обзор особенностей заполнения матрицы парных коэффициентов корреляции.
лабораторная работа, добавлен 11.11.2017Построение регрессионных моделей по рядам динамики. Использование критериев Фишера и Стьюдента, формулы линейного коэффициента корреляции. Оценка параметров уравнения регрессии, применение метода наименьших квадратов. Примеры гетероскедастичности.
контрольная работа, добавлен 25.04.2015Характеристика значимости коэффициентов простой линейной регрессии. Определение t-критерия Стьюдента при заданных параметрах парной регрессии, среднем квадратическом отклонении факторного признака, общей и остаточной дисперсии, количестве узловых точек.
контрольная работа, добавлен 18.12.2014Описание построения графиков фактических значений и линии регрессии. Определение коэффициента детерминации, использование математического пакета MathCAD и Excel. Вычисление направления и тесноты связи, расчет линейного коэффициента парной корреляции.
контрольная работа, добавлен 30.09.2018