Динамический ряд и множественная регрессия
Динамический ряд. Понятие о рядах динамики и их виды, методы выявления основных тенденций в рядах динамики: метод укрупнения интервалов, метод скользящей средней и аналитическое выравнивание. Понятие множественной регрессии и процесс построения её модели.
Подобные документы
Составление ряда распределения коммерческих баков РФ по величине капитала. Определение среднего квадратичного отклонения, коэффициента вариации. Расчет параметров уравнения регрессии. Сглаживание ряда динамики с помощью трехлетней скользящей средней.
контрольная работа, добавлен 22.05.2014Экстраполяция по скользящей и экспоненциальной средней. Одно- и многофакторные прогнозирующие функции. Метод экспоненциального сглаживания. Составление прогноза поквартального объема продаж ОАО "Прибой" с использованием метода скользящей средней.
контрольная работа, добавлен 09.12.2014Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.
контрольная работа, добавлен 08.02.2022Методы отбора экзогенных переменных и оценки качества полученного уравнения. Использование надстройки "Анализ данных" пакета MS Excel при построении моделей множественной регрессии. Предпосылки метода наименьших квадратов (условия Гаусса-Маркова).
лабораторная работа, добавлен 19.02.2016Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 04.05.2011Расчет линейного коэффициента парной корреляции, средней ошибки аппроксимации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации с помощью критерия Фишера. Построение систем эконометрических уравнений, их приведенная форма.
контрольная работа, добавлен 21.03.2013Определение параметров линейного уравнения множественной регрессии. Характеристика коэффициентов парной, частной и многократной корреляции. Нахождение скорректированного показателя многочисленной детерминации. Особенность применения критерия Фишера.
задача, добавлен 14.05.2016Понятие эконометрики и сущность эконометрической модели, этапы процесса моделирования (постановочный, априорный и пр.). Нелинейные модели парной регрессии и корреляции. Сравнение построенных моделей по индексу детерминации и средней ошибке аппроксимации.
реферат, добавлен 03.08.2015Определение цели множественной регрессии. Изучение путей преодоления сильной межфакторной корреляции. Расчет величины импорта на определенный товар относительно отечественного производства, изменения запасов и его потребления на внутреннем рынке.
презентация, добавлен 09.04.2015Понятие фиктивных переменных. Особенности их применения для функции спроса. Построение уравнения регрессии. Фиктивные переменные сдвига и взаимодействия, а также во временных рядах, в моделях с сезонностью. Моделирование линейного временного тренда.
контрольная работа, добавлен 11.12.2013Изучение величины, выражающей зависимость среднего значения случайной величины от значений случайной величины. Проведение исследования сущности и цели регрессионного анализа. Определение коэффициентов линейного уравнения множественной регрессии.
презентация, добавлен 07.10.2020Порядок вычисления параметров и построения поля корреляции и эмпирической линии регрессии. Расчет значимости коэффициентов регрессии с помощью t-статистики Стьюдента, определение доверительных интервалов, коэффициентов детерминации и корреляции.
контрольная работа, добавлен 27.09.2011Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Основные понятия и определения эконометрики и эконометрического моделирования. Парная корреляция и регрессия, проверка значимости параметров парной линейной модели. Виды линейной модели множественной регрессии. Системы линейных одновременных уравнений.
курс лекций, добавлен 26.11.2013Построение адаптивной мультипликативной модели Хольта-Уинтерса с учётом сезонного фактора. Проверка точности построенной модели. Расчёт и график экспоненциальной скользящей средней, построение стохастических линий и графиков скорости изменения цен.
контрольная работа, добавлен 09.12.2013Понятие "эконометрика", ее задачи, предмет и метод. Сбор и подготовка информации для расчета уравнения регрессии. Методика построения моделей эконометрического типа. Оценка прогнозных свойств эконометрической модели. Применение в управлении экономикой.
реферат, добавлен 04.03.2018Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
контрольная работа, добавлен 08.09.2014Формулировка и доказательство теоремы Гаусса-Маркова. Анализ точности определения оценок коэффициентов регрессии. Понятие коэффициента детерминации. Построение доверительных интервалов по линейному уравнению регрессии и расчёт коэффициента вариации.
контрольная работа, добавлен 28.07.2013Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.
презентация, добавлен 02.10.2011Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
курсовая работа, добавлен 17.04.2010Оценка линейного коэффициента множественной корреляции, коэффициента детерминации, средних коэффициентов эластичности, бетта–, дельта–коэффициентов двухфакторной регрессионной модели. Коэффициент детерминации модели, прогноз результирующего показателя.
контрольная работа, добавлен 16.04.2012Характеристика исследуемых показателей (значение, классификации, группировки, методы расчета), их графическое построение с помощью графиков и диаграмм, расчет показателей динамики, индексный анализ, выравнивание данных с помощью скользящей средней.
контрольная работа, добавлен 26.10.2011Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.
задача, добавлен 27.09.2016Выражение нелинейных соотношений между экономическими явлениями с помощью соответствующих нелинейных функций. Применение степенной функции в определении соотношений между явлениями. Спецификация модели. Отбор факторов построения множественной регрессии.
контрольная работа, добавлен 06.11.2014