Динамический ряд и множественная регрессия
Динамический ряд. Понятие о рядах динамики и их виды, методы выявления основных тенденций в рядах динамики: метод укрупнения интервалов, метод скользящей средней и аналитическое выравнивание. Понятие множественной регрессии и процесс построения её модели.
Подобные документы
Важные условия при построении рядов динамики. Абсолютное изменение уровней, коэффициент роста и темпы прироста. Правила построения рядов динамики. Сущность понятий интерполяция и экстраполяция. Виды и методы выявления типа тенденций в рядах динамики.
реферат, добавлен 14.08.2010Три основных класса моделей, которые применяются для анализа и прогноза в эконометрике. Понятие о временных рядах и их виды. Решение задач определения парной и множественной регрессии. Использование независимых переменных в регрессионных моделях.
учебное пособие, добавлен 01.06.2013Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.
методичка, добавлен 16.05.2016Понятие статистика и ее основные категории (признак, совокупность, вариация и пр.). Средние показатели в рядах динамики: понятие среднего уровня ряда, средний абсолютный прирост, темп роста. Способы обработки динамического ряда (укрепление интервалов).
контрольная работа, добавлен 29.05.2014Проблемы спецификации модели: отбор факторов при построении множественной регрессии, выбор формы уравнения. Уровни ряда, составляющие временных рядов. Аддитивная, мультипликативная и смешанная модели. Пример построения корреляционного поля данных.
контрольная работа, добавлен 25.02.2013Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Основные понятия теории вероятностей. Соотношения между экономическими переменными. Множественная корреляция и линейная регрессия. Оценка прогнозных качеств модели. Общее понятие о системах уравнений и временных рядах, используемых в эконометрике.
курс лекций, добавлен 15.09.2017Основная цель множественной регрессии, используемой в решении проблем спроса, изучении доходности акций и функции издержек производства. Условия включения факторов при построении множественной регрессии. Механизм действия их мультиколлинеарности.
презентация, добавлен 05.10.2015Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 29.01.2012Изучение типологии данных моделирования временных рядов при построении эконометрической модели. Анализ динамики автокорреляций коэффициентов величины во временных рядах тенденций и циклических колебаний значений. Расчет значений сезонной компоненты.
лекция, добавлен 08.10.2013Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.
шпаргалка, добавлен 25.02.2014Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.
реферат, добавлен 31.03.2017Множественные регрессионные модели. Использование множественной регрессии в решении проблем спроса, изучении доходности акций, изучении функции издержек производства, в макроэкономических расчетах. Выбор вида уравнения регрессии как спецификация модели.
презентация, добавлен 12.07.2015Построение и анализ линейной множественной регрессии. Исследование степени корреляционной зависимости между переменными. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Оценка авторегрессионной модели.
лабораторная работа, добавлен 02.08.2013Парная регрессия и корреляция. Типы кривых, используемые при количественной оценке связей между двумя переменными. Построенные модели по индексу детерминации и средней ошибке аппроксимации. Отбор факторов при построении уравнения множественной регрессии.
курс лекций, добавлен 10.04.2010Метод укрупнения интервалов. Изучение видов возможных относительных величин и тенденций их изменения. Средние показатели для первого и второго ряда динамики. Обобщающая характеристика совокупности однотипных явлений по какому-либо варьирующему признаку.
контрольная работа, добавлен 26.12.2013Построение и анализ линейной множественной регрессии. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Интерпретация коэффициентов регрессии. Проверка на наличие автокорреляции и гетероскедастичность.
контрольная работа, добавлен 02.08.2013Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.
статья, добавлен 23.01.2019Особенности эконометрического моделирования стоимости квартир. Порядок построения классической линейной модели множественной регрессии. Анализ показателей: индекса корреляции и детерминации, F-критерий Фишера. Оценка матрици на мультиколлинеарность.
контрольная работа, добавлен 12.01.2014Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.
презентация, добавлен 26.12.2014Построение многофакторных моделей. Автокорреляция в многомерных рядах. Алгоритм выявления автокорреляции остатков на основе критерия Дарбина - Уотсона и расчет величины. Спектральный анализ и гребневая регрессия. Адаптивные модели прогнозирования.
реферат, добавлен 27.11.2013Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015- 23. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Ряд динамики - ряд расположенных в хронологической последовательности числовых значений статистического показателя, характеризующих изменение общественных явлений во времени. В каждом ряду динамики имеются основные элементы: время и значение показателя.
курсовая работа, добавлен 31.05.2008Разработка и численная реализация алгоритма построения ранговой оценки неизвестных параметров регрессии. Аналитическое вычисление асимптотической относительной эффективности рангового метода. Сравнение устойчивости ранговой оценки параметров модели.
контрольная работа, добавлен 14.07.2016