Интегрирование систем уравнений. Определитель Вронского
Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.
Подобные документы
Описание ассоциированных решений задачи Коши для систем уравнений в дифференциалах, соответствующих системам уравнений с разрывной и обобщенной правыми частями. Решение этой задачи для соответствующих им систем в прямом произведении алгебр мнемофункций.
автореферат, добавлен 19.08.2018Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.
контрольная работа, добавлен 19.05.2014- 78. Метод Гаусса
Рассмотрение системы уравнений как условия, состоящего в одновременном выполнении нескольких уравнений относительно нескольких переменных. Установление обусловленности матрицы. Изучение методов интегрирования Ньютона-Котеса. Обзор метода прямоугольников.
доклад, добавлен 24.01.2016 Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.
контрольная работа, добавлен 12.03.2020- 80. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 - 81. Метод Гаусса
Решение систем линейных алгебраических уравнений методом Гаусса. Схема единственного деления. Необходимость выбора главного элемента по столбцу. Исключение неизвестного из уравнений на этапе обратного хода. Коэффициенты системы уравнений по Гауссу.
доклад, добавлен 18.09.2013 Понятие матрицы и ее виды. Определители 2-го и 3-го порядков. Совместимость систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Использование систем линейных уравнений при решении экономических задач. Производные функции, их применение.
учебное пособие, добавлен 02.02.2012Сингулярные интегральные уравнения: решение уравнений ограниченных на обоих концах методом подобластей. Характеристика программы Matchematica. Реализация метода подобластей в программе: метод Гаусса, решение системы линейных алгебраических уравнений.
курсовая работа, добавлен 12.05.2014Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.
контрольная работа, добавлен 19.01.2014Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Простейшие рациональные дроби и их интегрирование. Интегралы от иррациональных функций.
лекция, добавлен 25.06.2021Формулы теории матриц для систем обыкновенных дифференциальных уравнений. Формулы построчного ортонормирования переносимых матричных уравнений краевых условий жестких краевых задач. Вариант расчета вектора частного решения систем неоднородных ОДУ.
контрольная работа, добавлен 17.07.2016Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.
задача, добавлен 28.10.2017Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.
контрольная работа, добавлен 23.04.2022Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Решение систем линейных алгебраических уравнений как одна из основных задач вычислительной линейной алгебры, рассмотрение основных способов. Общая характеристика метода Гаусса. Анализ схемы единственного деления. Знакомство с особенностями метода Зейделя.
курсовая работа, добавлен 18.10.2013Назначение, области применения, достоинства и недостатки компьютерной системы для персонального компьютера Mathematica. Введение данных и решение дифференциальных уравнений Абеля и Дарбу математически, в аналитической форме, в системе Mathematica.
курсовая работа, добавлен 04.08.2012Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.
курсовая работа, добавлен 31.12.2018Анализ практических задач оптимизации объектов управления. Определение понятия игольчатой вариации. Примеры основных уравнений и их применения для синтеза оптимальных систем. Характеристика сущности принципа максимума. Пример решения уравнения состояния.
доклад, добавлен 23.07.2015История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.
лекция, добавлен 24.11.2015Изучение уравнений с двумя переменными пределами интегрирования, которые называют неклассическими. Трудности в построении резольвенты. Установление достаточных условий регуляризации решения неклассического интегрального уравнения Вольтерра I рода.
автореферат, добавлен 12.05.2018Матрицы и действия над ними. Вычисление определителя и транспонирование матрицы. Технология выполнения операций в среде Excel. Вычисление обратной матрицы с помощью функции МОБР. Решение систем линейных уравнений методом Жордана-Гаусса. Свойства вектора.
методичка, добавлен 25.06.2013Технология решений систем линейных алгебраических уравнений в интегрированной среде MathCad. Определение решения системы методом простой итерацией и матричным методом. Значение коэффициентов при неизвестных. Математическая палитра интегрированной среды.
лабораторная работа, добавлен 16.05.2015Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.
конспект урока, добавлен 07.04.2014Иван Георгиевич Петровский - известнейший и талантливейший математик XX века: талантливый организатор и общественный деятель, автор современной теории дифференциальных уравнений, многих научных работ которые используются в разных областях математики.
реферат, добавлен 05.03.2009