Интегрирование систем уравнений. Определитель Вронского

Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.

Подобные документы

  • Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.

    реферат, добавлен 06.03.2010

  • Рассмотрение решения уравнений с двумя переменными, систем уравнений, методов решения систем, таких как метод подстановки, сложения, графический, метод введения новых переменных, определителей второго и третьего порядков и теоремы Кронекера-Капеллы.

    научная работа, добавлен 25.02.2014

  • Способы дискретизации уравнений механики и принципы построения сетки в области интегрирования. Численное решение уравнений упругости, содержание и закономерности построения соответствующих моделей. Формирование и значение нерегулярной треугольной сетки.

    диссертация, добавлен 23.12.2013

  • Интегрирование линейного дифференциального уравнения с помощью степенных рядов, метод неопределенного коэффициента. Синтез управления не более, чем с одним переключением в управляемой системе второго порядка. Малые возмущения системы линейных уравнений.

    курсовая работа, добавлен 08.06.2014

  • Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.

    учебное пособие, добавлен 24.10.2012

  • Рассмотрение решений систем линейных алгебраических уравнений. Описание численных методов нелинейных уравнений, интерполяция и приближение функции. Краевые задачи, примеры расчетов и способов решения. Изучение метода обратной интерации, его характеристика

    курс лекций, добавлен 26.04.2014

  • Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.

    лекция, добавлен 06.04.2014

  • Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.

    курсовая работа, добавлен 06.04.2014

  • Рассмотрение принципов решения систем линейных уравнений. Обзор матричного метода, описанного И.К.Ф. Гауссом. Анализ его достоинств. Способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем методом Г. Крамера.

    презентация, добавлен 23.12.2016

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

  • Логарифмы: определение, свойства, функция, график. Десятичные и натуральные логарифмы. Понятие логарифмирования. Основное логарифмическое тождество. Решение уравнений, используя свойство логарифма. Решение систем уравнений и логарифмических неравенств.

    презентация, добавлен 05.03.2012

  • Разработка программно-алгоритмической поддержки символьных преобразований и вычислений на основе средств компьютерной алгебры с представлением решений. Апробация программ на известных задачах и применение их для символьно-численного интегрирования.

    автореферат, добавлен 27.03.2018

  • Определение абсолютной и относительной ошибки при помощи метода дифференциалов. Расчет линейной аппроксимации, применение метода интегралов для вычисления площади, работы силы. Практика решения характеристических уравнений. Общее решение ЛОДУ, ЛНДУ.

    контрольная работа, добавлен 11.04.2009

  • Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.

    шпаргалка, добавлен 10.03.2014

  • Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.

    курс лекций, добавлен 18.04.2016

  • Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.

    реферат, добавлен 18.05.2016

  • Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.

    статья, добавлен 26.10.2010

  • Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.

    статья, добавлен 07.08.2020

  • Численное решение дифференциальных уравнений как интерактивный процесс взаимодействия человека или неформальных и формальных процедур по поиску аналитического описания интегральной кривой или ее вида. Традиционный и нетрадиционный процесс решения дифур.

    статья, добавлен 25.08.2020

  • Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.

    контрольная работа, добавлен 06.08.2013

  • Изучение истории развития науки математики. Характеристика применения Ахмесом метода одного и двух ложных положений (фальшивое правило). Анализ способов составления и решения квадратных уравнений в древнем Вавилоне. Решение уравнений в целых числах.

    реферат, добавлен 02.11.2010

  • Решение системы линейных уравнений средствами матричного исчисления и с помощью правила Крамера. Вычисление алгебраических дополнений определителя. Сущность метода Гаусса. Формула площади треугольника. Расчет координат нормального вектора плоскости.

    контрольная работа, добавлен 21.01.2012

  • Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.

    контрольная работа, добавлен 07.06.2013

  • Общая характеристика основных функций уравнения. Знакомство с графическим методом решения трансцендентных уравнений, анализ особенностей. График функции как множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов.

    статья, добавлен 17.02.2019

  • Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.

    реферат, добавлен 16.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.