Сущность двухшагового метода наименьших квадратов

Особенности применения метода наименьших квадратов для минимизации ошибки как одного из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Основные виды уравнений множественной регрессии.

Подобные документы

  • Оценка связи порядковых переменных с помощью непараметрических ранговых коэффициентов Спирмена и Кендалла. Модели метода наименьших квадратов с детерминированной независимой переменной. Оценка дисперсии независимой переменной. Сложение временных рядов.

    статья, добавлен 28.07.2020

  • Прогнозирование стоимости нефти как важная задача для проведения государственной политики. Использование нелинейного метода наименьших квадратов для оценки параметров модели. Применение накопившейся статистической информации для уточнения прогноза.

    статья, добавлен 13.09.2018

  • Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.

    контрольная работа, добавлен 29.01.2012

  • Классификация эконометрических моделей. Использование метода наименьших квадратов для нахождения параметров. Описание тренда и интервенции временного ряда. Построение модели стоимости обучения в высшем учебном заведении. Проведение анализа рынка квартир.

    контрольная работа, добавлен 17.02.2014

  • Экстраполяция - определение недостающего уровня, находящегося в начале или конце ранжированного ряда. Применение метода наименьших квадратов для расчета параметров функциональной зависимости. Основные этапы при прогнозировании экономических явлений.

    контрольная работа, добавлен 24.11.2014

  • Определение средней выручки продавцов. Расчет коэффициента корреляции. Построение графиков корреляционных зависимостей. Оценка адекватности регрессионных моделей. Расчет системы уравнений для теоретической линии регрессии методом наименьших квадратов.

    контрольная работа, добавлен 16.04.2016

  • Множественная регрессия как наиболее распространенный метод в эконометрике. Отбор факторов при построении уравнения множественной регрессии. Метод наименьших квадратов, свойства оценок на его основе. Сравнение влияния различных факторов на результат.

    лекция, добавлен 25.04.2015

  • Определение полиномиальной аппроксимации для линейной, гиперболической и параболической регрессий. Применение функции невязки для решения задачи регрессионного анализа методом наименьших квадратов. Компьютерная реализация полиномиальной аппроксимации.

    лабораторная работа, добавлен 02.10.2012

  • Экстраполяция как один из важнейших способов современного социально-экономического и политического прогнозирования. Тренд – изменение, определяющее общее направление развития, основную тенденцию временных рядов. Сущность метода наименьших квадратов.

    реферат, добавлен 02.02.2018

  • Эконометрический метод, понятие эконометрических уравнений, их применение. Система независимых уравнений, пример модели авторегрессии. Проблема идентифицируемости, система линейных одновременных эконометрических уравнений, методы наименьших квадратов.

    контрольная работа, добавлен 19.01.2016

  • Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.

    контрольная работа, добавлен 05.02.2016

  • Показаны порядок и принципы принятия стратегического решения. Рассмотрены методы прогнозирования отчетности. Приведен пример применения метода наименьших квадратов для принятия стратегических решений. Построена диаграмма рассеивания по исходным данным.

    статья, добавлен 15.02.2020

  • Рассмотрение особенностей методологии выбора факторов при построении эконометрической модели. Изучение процесса расчета коэффициентов многофакторных эконометрических моделей при помощи метода наименьших квадратов. Определение коэффициентов эластичности.

    презентация, добавлен 04.04.2023

  • Идентификация парной линейной регрессионной зависимости между ВВП и капиталом. Идентификация линейных трендовых моделей ВВП, капитала и числа занятых, прогноз по этим моделям. Эконометрическая модель с использованием метода наименьших квадратов.

    контрольная работа, добавлен 01.11.2012

  • Основные принципы и методы построения линейных, нелинейных эконометрических моделей спроса, предложения. Трендовая модель экономической динамики. Использование для нахождения параметров модели либо метода наименьших квадратов, либо матричной записи.

    контрольная работа, добавлен 13.06.2009

  • Особенности прогнозирования спроса на товары длительного пользования. Метод математического моделирования. Использование метода наименьших квадратов для идентификации параметров системы. Применение моделей кривых роста в экономическом прогрессе.

    дипломная работа, добавлен 30.10.2017

  • Моделирование времени выполнения заказа клиента методом Монте-Карло, применение законов распределения. АВС-анализ прибыльности товаров, определение вероятности отказа в поставке товара клиенту методами схемной надёжности, суть метода наименьших квадратов.

    реферат, добавлен 05.12.2016

  • Расчет среднего отклонения и доверительного интервала для генерального среднего выручки. Нахождение методом наименьших квадратов уравнения прямой линии регрессии, построение графика корреляционных зависимостей. Оценка адекватности регрессионных моделей.

    контрольная работа, добавлен 26.02.2010

  • Вычисление коэффициента корреляции между заработной платой и прожиточным минимумом. Построение доверительных полос для уравнения регрессии. Дисперсионный анализ и определение параметров линейной регрессионной модели методом наименьших квадратов.

    контрольная работа, добавлен 21.12.2013

  • Анализ метода проведения парного регрессионного анализа с целью выявления связи между экономическими показателями деятельности коммерческих банков. Определение коэффициента детерминации, оценка значимости уравнения регрессии, расчет ошибки аппроксимации.

    лабораторная работа, добавлен 16.11.2011

  • Особенности принятия решений в условиях неопределенности и риска с помощью методов: Парето, Вальда, Гурвица, Лапласса. Сущность способа средней полезности. Описание алгоритма построения прогнозной функции полиномиальным и методом наименьших квадратов.

    курсовая работа, добавлен 01.02.2014

  • Разработка эконометрической модели в пакете Econometric Views. Расчет модели множественной регессии для всей совокупности независимых факторов методом наименьших квадратов. Определение коэффициентов эластичности и детерминации. Анализ характера остатков.

    курсовая работа, добавлен 04.12.2013

  • Основная цель создания сообщества добавленной стоимости. Проведение расчета коэффициентов регрессии методом наименьших квадратов. Определение зависимости стоимости бренда от количества функциональных единиц. Основные характеристики регрессионной модели.

    статья, добавлен 25.03.2018

  • Статистические и математические функции Excel: модели линейной регрессии с двумя коэффициентами, полиномиальная регрессия. Построение экспоненциальной линии тренда путем расчета точек методом наименьших квадратов. Дисконтированный период окупаемости.

    контрольная работа, добавлен 10.11.2012

  • Системы эконометрических уравнений. Суть идентификации - единственности соответствия между приведенной и структурной формой модели. Оценка параметров структурной модели. Косвенный и двухшаговый метод наименьших квадратов. Модель протекционизма Сальвадора.

    курсовая работа, добавлен 25.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.