Сущность двухшагового метода наименьших квадратов

Особенности применения метода наименьших квадратов для минимизации ошибки как одного из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Основные виды уравнений множественной регрессии.

Подобные документы

  • Создание информационно-аналитических систем (ИАС). Простые формы корреляционно-регрессионного анализа. Процедуры обработки множественных характеристик. Определение перспектив использования регрессионного анализа в сочетании с другими методами статистики.

    статья, добавлен 22.08.2020

  • Гистограмма, которая отображает временную зависимость потребности населения в товаре. Количество проданного товара за месяц. Построение логарифмической линии тренда путем расчета точек, методом наименьших квадратов по формуле. Прогноз с помощью функции.

    лабораторная работа, добавлен 13.03.2014

  • Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.

    учебное пособие, добавлен 18.03.2015

  • Характеристика средних величин и показателей вариации. Сущность корреляционного анализа. Алгоритм регрессионного анализа. Методика оценки средних величин, динамики показателей, изменения их под влиянием тех или иных факторов. Измерение величины влияния.

    курсовая работа, добавлен 22.02.2019

  • Определение понятия временных рядов и их основных элементов. Аддитивная и мультипликативная модели временного ряда, автокорреляция его уровней и выявление структуры. Метод наименьших квадратов. Идентификация модели стационарных и нестационарных рядов.

    реферат, добавлен 06.11.2011

  • Оценка надежности и качества коэффициентов уравнения регрессии. Использование методов регрессионного анализа при исследовании ЗАО "Агрофирма "Маяк". Обоснование точной зависимости роста зерновых культур от количества осадков в вегетационный период.

    курсовая работа, добавлен 15.02.2014

  • Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.

    презентация, добавлен 26.12.2014

  • Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.

    шпаргалка, добавлен 25.02.2014

  • Нахождение оптимального распределения результата или ресурсов между двумя объектами управления. Метод наименьших квадратов и неопределенных множителей Лагранжа. Прогнозирование временных рядов. Колебания относительно тренда, случайная компонента.

    контрольная работа, добавлен 18.06.2014

  • Построение и анализ линейной множественной регрессии. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Интерпретация коэффициентов регрессии. Проверка на наличие автокорреляции и гетероскедастичность.

    контрольная работа, добавлен 02.08.2013

  • Решение непараметрической задачи восстановления зависимости, которая описывается суммой линейного тренда и периодической функции с известным периодом. Асимптотические распределения параметров и трендовой составляющей, построение интервального прогноза.

    статья, добавлен 29.04.2017

  • Основы прогнозирования и валютного рынка. Современное состояние валютного фонда России, его проблемы и тенденции. Прогнозирование доли доллара в общем объеме золотовалютных резервов методом экстраполяции временного ряда и методом наименьших квадратов.

    курсовая работа, добавлен 20.06.2014

  • Применение линейного регрессионного анализа для ситуаций с одной зависимой и одной независимой переменной. Проверка соблюдения необходимых условий для применения анализа линейной однофакторной регрессии. Построение точек на графике прямой регрессии.

    презентация, добавлен 01.11.2013

  • Разработка и численная реализация алгоритма построения ранговой оценки неизвестных параметров регрессии. Аналитическое вычисление асимптотической относительной эффективности рангового метода. Сравнение устойчивости ранговой оценки параметров модели.

    контрольная работа, добавлен 14.07.2016

  • Построение линейного уравнения парной регрессии на основе данных о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны и о среднедневной заработной плате. Расчет коэффициента парной корреляции и средней ошибки аппроксимации.

    контрольная работа, добавлен 21.02.2011

  • Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.

    задача, добавлен 27.09.2016

  • Анализ собственно-корреляционных параметрических методов изучения связи, оценка существенности корреляции. Понятие регрессионного анализа и оценка параметров уравнений регрессии. Вычисление значений линейного и множественного коэффициентов корреляции.

    контрольная работа, добавлен 14.10.2009

  • Особенности поиска параметров уравнения линейной регрессии. Основы определения средней относительной ошибки аппроксимации. Графическое построение фактических и модельных значений точки прогноза. Основные аспекты вычисления коэффициента детерминации.

    контрольная работа, добавлен 16.04.2015

  • Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.

    презентация, добавлен 02.10.2011

  • Примеры расчета параметров экономической модели. Анализ уравнений линейной, гиперболической парной регрессии. Оценка тесноты связи и значимости коэффициентов регрессий, определение статистической надежности результатов регрессионного моделирования.

    контрольная работа, добавлен 22.11.2010

  • Информация, характеризующая зависимость выпуска продукции от объема капиталовложений по предприятиям легкой промышленности региона. Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов.

    контрольная работа, добавлен 20.04.2015

  • Аппроксимация, интерполяция и экстраполяция как наиболее распространенные методы поиска функциональных зависимостей. Методы и подходы к интерполяции данных. Метод наименьших квадратов как математический метод, применяемый для решения различных задач.

    контрольная работа, добавлен 30.11.2016

  • Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.

    статья, добавлен 23.01.2019

  • Линейные, нелинейные парные функции регрессии. Оценка тесноты связи дохода от железнодорожных перевозок и пассажирооборота с помощью показателей корреляции, детерминации, среднего коэффициента эластичности. Оценка ошибки аппроксимации уравнений регрессии.

    курсовая работа, добавлен 29.10.2015

  • Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов. Проверка независимости остатков с помощью критерия Дарбина-Уотсона. Вычисление коэффициента детерминации. Построение степенной модели.

    контрольная работа, добавлен 23.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.