Применение инверсии к решению геометрических задач

Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.

Подобные документы

  • Описание общих аксиом конструктивной геометрии и математических инструментов. Правила формулировки задач на построение и методика их решения (методы геометрических мест и преобразований, алгебраический метод). Построения циркулем и иными инструментами.

    курсовая работа, добавлен 24.01.2017

  • Криволинейные системы координат. Векторы и тензоры, их преобразования при поворотах системы координат. Свойства тензоров второго ранга, символ Леви-Чивита. Преобразование тензорных величин при инверсии. Взаимно однозначное соответствие между переменными.

    дипломная работа, добавлен 18.09.2015

  • Изучение свойств фигур на плоскости, основные понятия планиметрии и представления о геометрических телах. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного геометрического расположения и их значения относительно плоскости в аксиоме.

    презентация, добавлен 13.04.2012

  • Биография Пифагора, история открытия и различные формулировки его теоремы. Характеристика способов доказательства, особенности геометрических и алгебраических методов. Значение теоремы Пифагора и ее применение. Практикум по решению задач школьного курса.

    курсовая работа, добавлен 30.03.2013

  • Необходимость изменения геометрического образования учащихся. Применения метода преобразования, его преимущества над остальными. Характеристика задач решаемых данным способом, образование новых умений. Использование метода параллельного переноса.

    методичка, добавлен 06.04.2013

  • Умение решать задачи - показатель уровня математического развития. Поиск эффективных способов решения задач, доступных для понимания и применения школьниками. Общий алгоритм решения задач. Определение графа, виды задач, которые можно решать с их помощью.

    презентация, добавлен 15.10.2016

  • Исследование классификационных методов отображения плоскости на себя. Определение равенства геометрических фигур. Свойства параллельного переноса точки в плоскости. Принципы осевой и центральной симметрий в отношении прямой. Коэффициенты гомотетии.

    краткое изложение, добавлен 17.03.2014

  • Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.

    курсовая работа, добавлен 04.03.2020

  • Учение об отношении и пропорциональности отрезков в арифметической теории. Понятие гомотетии для трёхмерного пространства. Использование метода подобия при решении геометрических задач. Свойство биссектрисы треугольника. Теорема о четырёх точках трапеции.

    курсовая работа, добавлен 27.11.2014

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.

    контрольная работа, добавлен 27.03.2012

  • Изучение свойств преобразований плоскости. Примеры решения задач с использованием преобразований плоскости. Анализ содержания школьных учебников геометрии по данной тематике. Возможности применения преобразований плоскости к решению задач планиметрии.

    курсовая работа, добавлен 09.06.2013

  • Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.

    книга, добавлен 25.11.2013

  • Искусство построения геометрических фигур в Древней Греции. Построение циркулем и линейкой куба, имеющего объем вдвое больший, чем объем данного куба. Три знаменитые классические задачи древности. Решение задач на построение с помощью циркуля и линейки.

    статья, добавлен 09.04.2019

  • Графическое решение квадратного уравнения. График уравнения с двумя переменными как множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство, принципы его составления. Применение графиков в решении неравенств.

    реферат, добавлен 03.04.2012

  • Определение преимуществ векторного метода для доказательства некоторых теорем и решения задач по планиметрии. Доказательства теорем векторным методом. Доказательства основных соотношений, применяемых при решении задач. Разложения неколлинеарных векторов.

    презентация, добавлен 10.04.2013

  • Скалярное произведение векторов и его использование в решении пространственных задач. Применение основных векторных соотношений к решению стереометрических задач. Основные векторные и координатные формулы, связанные со скалярным произведением векторов.

    курсовая работа, добавлен 26.02.2013

  • Теория движения плоскости. Определение и свойства центральной и осевой симметрии плоскости, свойства переноса и поворота. Композиция центральных симметрии и переносов. Координатные формулы движений плоскости. Примеры задач на тему "Движение плоскости".

    курсовая работа, добавлен 05.10.2017

  • Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.

    курсовая работа, добавлен 25.11.2013

  • Характеристика параллельных прямых на плоскости в курсе планиметрии. Теоремы как признаки параллельности прямых, а также роль их аксиомы. Параллельность прямых в пространстве и особенности скрещивающихся линий. Теорема о линиях и ее доказательство.

    реферат, добавлен 07.07.2014

  • Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.

    курсовая работа, добавлен 21.05.2012

  • Определение момента окончания переходного процесса при изменении параметров непрерывной динамической системы на основе применения метода Ляпунова, основанного на оценивании областей притяжения состояний равновесия. Проблема построения функции Ляпунова.

    статья, добавлен 12.05.2018

  • Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.

    контрольная работа, добавлен 04.11.2012

  • пределение основных аксиом плоскости и точек пространства, принадлежащих и не принадлежащих плоскости. Исследование аксиом, характеризующих взаимодействие точек и прямых. Определение основных свойств отрезков и равенства треугольников в одной плоскости.

    презентация, добавлен 13.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.