Применение инверсии к решению геометрических задач
Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.
Подобные документы
Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
курсовая работа, добавлен 10.07.2017Общий вид и методы решения задач линейного программирования. Практическое применение симплекс-метода в решении задачи линейного программирования, его особенности и программная реализация. Понятие "двойственных задач линейного программирования".
курсовая работа, добавлен 09.02.2014Описание метода векторного преобразования Фурье с разрывными коэффициентами. Подробная иллюстрация на примере динамической задачи теории упругости, техники применения указанного метода к решению задач математической физики в случае неоднородных сред.
статья, добавлен 31.05.2013Исследование методов решения задач линейного программирования (ЗЛП) практическое применение симплекс-метода в решении задачи линейного программирования, его особенности и программная реализация, и понятие "двойственных задач линейного программирования".
курсовая работа, добавлен 09.02.2014Применение геометрических образов, полученных с помощью программных средств. Решение дифференциальных уравнений. Понятие автономной системы и фазового пространства. Фазовый портрет линейной системы на плоскости. Построение фазовых портретов в Delphi.
учебное пособие, добавлен 08.09.2015Использование программного обеспечения для построения графиков при решении математических задач. Определение функции на заданном отрезке с помощью Мастера построения графиков. Особенности их форматирования. Определение положительного корня уравнения.
контрольная работа, добавлен 07.10.2016Систематизация теоретического материала по теме "Неравенства и оценка в текстовых задачах" и его применение к решению. Разработка типологии задач, в решении которых используется неравенства и оценка текстовых задач. Задачи, решаемые системой неравенств.
курсовая работа, добавлен 25.02.2019Методика применения метода конечных элементов к решению уравнения теплопроводности. Простая процедура учета граничных условий задачи. Сравнение затрат машинного времени и погрешности расчетов при использовании различных видов элементов и функций формы.
статья, добавлен 30.10.2016Написание координат концов новых полученных ломанных и сравнение их с исходными. Применение свойства периодичности любой тригонометрической функции, определение наименьшего положительного периода. Построение графика функции. Абсциссы и ординаты его точек.
презентация, добавлен 11.01.2014Свойства логического мышления. Сущность законов тождества, непротиворечия, исключенного третьего и достаточного основания. Роль языка в хранении и передаче информации в процессе познания. Образование союзов и кванторов. Понятие конъюнкции и инверсии.
контрольная работа, добавлен 01.02.2020Производная функции как одно из фундаментальных понятий математики. Применение производной при решении физических, химических и биологических задач. Особенности решения с помощью производной функции задач с географическим и экономическим содержанием.
творческая работа, добавлен 25.01.2015Описание методов проекций (центральные и параллельные проекции). Проецирование методом Монжа. Взаимное положение прямых в пространстве: пересекающиеся, параллельные и скрещенные прямые. Способы задания плоскости на чертеже. Прямая и точка в плоскости.
курсовая работа, добавлен 15.12.2010Анализ аксиом о взаимном расположении точек, прямых и плоскостей в пространстве. Характеристика прямоугольной системы координат в промежутке. Свойства аффинных и метрических преобразований в стереометрии. Суть векторного решения стереометрических задач.
курсовая работа, добавлен 18.10.2015Постановка и графический метод решения задач линейного программирования с двумя переменными. Построение математических моделей. Особенности симплексного метода решения задач линейного программирования, его основные положения, алгоритм, применение.
курсовая работа, добавлен 22.04.2011Использование математической схемы при обучении учащихся решению задач. Применение занимательной комбинаторики для обучения младших школьников. Психологические особенности формирования универсальных учебных действий у учащихся начальных классов.
статья, добавлен 04.08.2021Аликвотные дроби в Древнем Египте. История возникновения аликвотных дробей, их свойства и применение при решении задач. Гипотеза Эрдёша-Штрауса, ее обощение. Разложение обыкновенных дробей на аликвотные, действия с ними и примеры решения задач.
курсовая работа, добавлен 03.05.2019Методы отображения пространственных объектов на плоскости. Способы графического и аналитического решения различных геометрических задач. Центральное проецирование. Сущность метода проекции с числовыми отметками. Взаимное расположение точки и прямой.
курс лекций, добавлен 25.12.2010Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.
курсовая работа, добавлен 23.04.2014Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Изображение геометрических фигур в параллельной проекции. Методика решения задач на построение. Изучение теоретической основы практической графики. Проективные преобразования.
курсовая работа, добавлен 09.11.2021Биография и основные открытия Блеза Паскаля. Изучение роли понятия треугольника Паскаля при решении задач, его свойств, истории и построения. Применение разнообразных методов, рациональных способов решения задач с применением треугольника Паскаля.
творческая работа, добавлен 06.02.2017Правила решения задач на построение геометрических фигур в координатной плоскости с применением циркуля и линейки. Алгебраический метод получения отрезка. Формульные выражение для вычисления корней квадратного уравнения. Понятие однородных функций.
контрольная работа, добавлен 25.01.2015Теорема Чевы и Менелая, их особенности. Методика обучения решению задач в период предпрофильной подготовки. Изучение темы "Теорема Менелая и теорема Чевы" в курсе геометрии 10 класса. Применение теорем Менелая и Чевы в решении стереометрических задач.
презентация, добавлен 20.01.2016Применение локальной теоремы Муавра-Лапласа при решении задач. Составление закона распределения случайной величины, определение математического ожидания, дисперсии. Вычисление средней квадратической ошибки выборки. Построение эмпирических линий регрессии.
задача, добавлен 16.10.2017