Теория вероятностей
Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.
Подобные документы
Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.
реферат, добавлен 10.11.2014Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.
контрольная работа, добавлен 06.11.2012Построение ряда распределения случайной величины, расчет ее математического ожидания и дисперсии. Определение частных, условных распределений и числовых характеристик системы случайных величин, вероятности попадания двумерной случайной величины в область.
контрольная работа, добавлен 13.01.2011Определение вероятности суммы совместных событий. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон (распределение Гаусса). Функции случайной величины. Центральная предельная теорема. Закон больших чисел.
презентация, добавлен 10.08.2015Операции над событиями и их запись. Относительная частота случайного события, ее устойчивость. Изучение нормального закона распределения. Дисперсия и среднее квадратичное отклонение случайной величины. Неравенства Чебышева и закон больших чисел.
учебное пособие, добавлен 22.06.2014История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.
реферат, добавлен 08.06.2017Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.
презентация, добавлен 29.09.2017Основные подходы к определению вероятности события и формулы комбинаторики. Дискретное распределение вероятности и понятие математического ожидания. Дисперсия и стандартное отклонение. Биноминальный закон распределения. Непрерывные случайные величины.
учебное пособие, добавлен 25.01.2012Изучение основ комбинаторики. Классическое определение вероятности. Свойства математического ожидания. Понятие о критериях согласия. Виды уравнений регрессии. Методы анализа статистических данных. Применение закона распределения случайной величины.
учебное пособие, добавлен 18.10.2014Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014Рассмотрение элементов теории вероятностей. Испытание как осуществление комплекса условий. Элементарное событие – результат который может произойти при проведении испытания. Пространство совокупности элементарных событий – множество всех исходов испытания
курсовая работа, добавлен 14.03.2022Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015Случайная величина, которая в зависимости от исхода испытания случайно принимает одно из множества возможных значений. Непрерывные и дискретные случайные величины. Основные свойства функции распределения, математического ожидания, коэффициента корреляции.
реферат, добавлен 25.02.2011Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
учебное пособие, добавлен 12.03.2015Три типа событий теории вероятностей, классическая вероятностная модель. Закон распределения случайной величины, понятие математического ожидания. Критерии для принятия решений в условиях неопределенности. Решение задач графоаналитическим методом.
контрольная работа, добавлен 29.11.2014Исследование геометрического закона распределения вероятностей дискретной случайной величины. Построение графиков зависимости математического ожидания от параметра распределения. Написание функции для определения коэффициентов эксцесса и асимметрии.
лабораторная работа, добавлен 03.04.2014Способы задания дискретной случайной величины. Изучение основных свойств функции распределения. Вероятность того, что непрерывная случайная величина примет одно определенное значение. Плотность распределения вероятностей непрерывной случайной величины.
презентация, добавлен 08.12.2014Понятие двумерной случайной величины и закон ее распределения. Особенности дискретных и непрерывных величин, плотность вероятностей. Числовые характеристики двумерной случайной величины, математическое ожидание, дисперсия, корреляционный момент.
лекция, добавлен 08.12.2015Вероятность - базовое понятие теории вероятностей – математической науки, предметом исследований которой является изучение свойств вероятностей событий, удовлетворяющих некоторым простым соотношениям. Размышления о случайном. Задача о разделе ставки.
реферат, добавлен 19.08.2015Теория вероятностей как математический аппарат для изучения закономерностей случайных событий и связанных с ними случайных величин. Использование вероятностных и статистических методов в современной физике, технике, экономке, биологии и медицине.
курсовая работа, добавлен 11.06.2014Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012Принципы применения методов теории вероятностей и математической статистики для решения статистических задач. Построение гистограммы относительных частот. Эмпирическая функция распределения случайной величины. Оценка математического ожидания выборки.
контрольная работа, добавлен 16.11.2017Расчет предела функции и ее производной. Понятие дифференциала и неопределенного интеграла. Примеры решения типовых задач по теории вероятностей. Случайные величины и их нормальное распределение. Регрессионный анализ. Проверка статистических гипотез.
методичка, добавлен 09.03.2015Закон распределения случайной величины. Рассмотрение геометрической интерпретации оси абсцисс. Понятие момента в механике, описание распределения масс. Исследование функции распределения вероятностей. Начальный момент прерывной случайной величины.
презентация, добавлен 02.05.2020Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.
презентация, добавлен 11.11.2022