Теория вероятностей
Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.
Подобные документы
Главная особенность исследования теоремы Бернулли. Построение графика распределения вероятностей. Основной анализ определения полиномиальной схемы. Характеристика гипергеометрических испытаний. Изучение интегральной приближенной формулы Муавра-Лапласа.
презентация, добавлен 25.09.2017- 102. Случайные величины
Случайная величина – величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно. Дискретные, непрерывные и дискретно-непрерывные (смешанные) данные. Функция распределения вероятностей.
реферат, добавлен 13.01.2014 Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.
книга, добавлен 06.05.2013Случайные события и вероятность. Теорема сложения вероятностей для несовместных событий. Формула Байеса. Основные законы распределения дискретных случайных величин. Формула Бернулли. Интегральная теорема Лапласа. Математическое ожидание, дисперсия.
курс лекций, добавлен 08.12.2015- 105. Теория вероятностей
Рассмотрение элементов теории вероятностей и пространства элементарных частиц. Изучение закономерностей проведения массовых однородных испытаний. Рассмотрение условий классической схемы испытаний. Определение вероятности произведения двух событий.
контрольная работа, добавлен 28.03.2022 Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
лекция, добавлен 26.07.2015- 107. Основы комбинаторики
История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.
реферат, добавлен 12.11.2016 - 108. Случайные процессы
Определение понятий "случайная функция", "случайный процесс", "случайное поле". Функция распределения вероятностей случайного процесса. Расчет плотности распределения вероятностей случайного процесса. Характеристика моментных функций случайного процесса.
реферат, добавлен 29.11.2017 Исследовано, что в математике название парадокса применяется, когда из кажущихся верными посылок получаются противоречия, что доказывает ложность посылок. Рассмотрено несколько наиболее интересных парадоксов теории вероятностей, приведены примеры.
статья, добавлен 25.02.2019Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.
реферат, добавлен 05.06.2012Программа курса высшей школы для ознакомления с задачами и методами теории вероятностей и математической статистики в объёме, достаточном для успешного практического использования в работе. Включает экзаменационные вопросы и образцы контрольных работ.
методичка, добавлен 16.01.2014- 112. Теория вероятности
Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.
контрольная работа, добавлен 29.11.2015 - 113. Теория вероятностей
Нахождение вероятности выбора белых шаров из определенного количества черных. Вычисление вероятности выхода из строя элементов, заданных по условию, вероятность противоположного события. Построение графика вероятностей, использование формулы Бернулли.
контрольная работа, добавлен 24.09.2016 Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.
презентация, добавлен 21.09.2017Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.
учебное пособие, добавлен 22.06.2014Порядок расчета вероятностей событий с использованием классической формулы. Процесс решение задач для выражения события В через все события А. Определение вероятности того что взятая деталь окажется стандартной. Использование формулы Бейеса и Пуассона.
контрольная работа, добавлен 13.02.2013- 117. Теория вероятности
Формулы комбинаторики и вероятность. Классическое определение вероятности. Непрерывные и дискретные случайные величины. Закон распределения случайных дискретных величин, их числовые характеристики. Статистические методы обработки экспериментальных данных.
учебное пособие, добавлен 29.09.2017 - 118. Теория вероятностей
Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.
курс лекций, добавлен 20.12.2012 - 119. Основы математики
Определение и анализ вероятностей событий. Рассмотрение формулы полной вероятности. Изучение формулы Бернулли. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Ознакомление с законом распределения случайной величины.
контрольная работа, добавлен 24.03.2017 Изучение случайных явлений, статистическая обработка результатов численных заданий. Решение задач, связанных с теорией вероятности. Способы вычисления наступления предполагаемого события. Вероятность попадания случайной величины в заданный интервал.
контрольная работа, добавлен 18.12.2013Проверка статистической гипотезы о виде неизвестного распределения. Оценка математического ожидания случайной величины. Определение корреляционной зависимости между рядами наблюдений. График эмпирической функции и функции нормального распределения.
контрольная работа, добавлен 23.12.2012Случайные величины, их понятие. Законы распределений и их характеристика. Биномиальное распределение (схема Бернулли). Дискретные случайные величины. Распределение Пуассона, геометрическое распределение. Числовые характеристики, математическое ожидание.
презентация, добавлен 12.11.2017Теория массового обслуживания как один из разделов теории вероятностей, ее содержание и сферы практического применения, а также основные цели и задачи. Марковский случайный процесс и его закономерности. Уравнения Колмогорова для вероятностей состояний.
лекция, добавлен 02.04.2019- 124. Основы статистики
Элементы теории вероятностей. Математическое ожидание, дисперсия, корреляция конечной случайной величины. Свойства функции распределения. Распределение Пуассона и его сущность. Способы формирования выборочной совокупности. Схема проверки гипотез.
презентация, добавлен 11.12.2014 Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.
лекция, добавлен 25.01.2013