Теория графов

Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.

Подобные документы

  • Глобальные структуры алгебраических байесовских сетей. Описание схемы алгоритма равновероятного синтеза минимального графа смежности. Понятие и сущность алгебраических байесовских сетей. Выявление основных возможностей реализации минимальных графов.

    статья, добавлен 15.01.2019

  • Развитие теории графов, их применение в различных отраслях научного знания. Понятие, определение и изображение графа, системы связей между объектами. Описание структуры графов. Разработка программы для определения сильных компонент графа, баз и антибаз.

    курсовая работа, добавлен 24.04.2011

  • История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.

    лекция, добавлен 11.02.2010

  • Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.

    курсовая работа, добавлен 30.03.2015

  • Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.

    курсовая работа, добавлен 13.09.2012

  • Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.

    лекция, добавлен 18.10.2013

  • Сложение в шестнадцатеричной, двоичной, восьмеричной и десятичной системах счисления. Минимизация логических функций методами тождественных преобразований и S-кубов, методом карт Карно. Построение графа конечного автомата по таблице выходов и переходов.

    контрольная работа, добавлен 11.01.2013

  • Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.

    курсовая работа, добавлен 04.02.2015

  • Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.

    статья, добавлен 29.04.2017

  • Техническое проектирование радиоэлектронных средств. Решение задачи компоновки модулей в определённые конструктивные единицы. Разрезание матрицы смежности, соответствующее разрезанию графа на три куска. Недостатки матричного метода разрезания графа.

    статья, добавлен 25.10.2018

  • Бесперспективность проверки существования нераскрашиваемого графа путем полного перебора. Задача построения однодневного расписания учебных занятий. Проверка существования гармонической раскраски у каждого графа. Применение рекурсивной процедуры AddSplit.

    статья, добавлен 21.06.2018

  • Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.

    доклад, добавлен 29.12.2014

  • Розгляд задачі побудови максимального простого ланцюга графа. Означення серединних умов типу 4 і 5 для випадку взаємної залежності вершин. Формулювання твердження про властивості конструктивної повноти зв’язаних серединних умов щодо вершин і шляхів.

    статья, добавлен 30.01.2017

  • Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.

    учебное пособие, добавлен 15.10.2016

  • Основні положення теорії графів. Характеристика спектру самоспряженого оператора, який породжений матрицею суміжності даного графа. Побудова спектральної міри, розгляд явних форм власних векторів та спектрального розкладу за власними векторами.

    статья, добавлен 25.03.2016

  • Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.

    реферат, добавлен 13.01.2012

  • Определение окружности как геометрической фигуры, состоящей из всех точек плоскости, расположенных на заданном расстоянии от её центра. Центр, радиус, хорда и диаметр окружности. Построение окружности, перпендикулярных прямых и угла, равного данному.

    презентация, добавлен 04.12.2012

  • Основные возбудители инфекционных болезней. Построение математической модели распространения инфекционных болезней. Определение диаметра предфрактального графа, моделирующего распространение инфекции. Спектры предфрактальных графов с затравками-звездами.

    статья, добавлен 15.05.2017

  • Построение модели транспортной сети в виде графа, с множеством вершин, соответствующих узлам сети, и множеством ребер – участкам дорог. Оптимальный алгоритм выделения наибольших максимальных цепей по заданному критерию и оценка по остальным критериям.

    статья, добавлен 26.05.2017

  • Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.

    курсовая работа, добавлен 26.11.2014

  • Получение Л. Эйлером критерия существования обхода ребер графа при решении задачи о Кенигсбергских мостах. Формулировка теоремы для связных ориентированных и неориентированных графов. Пример дерева перебора вариантов. Фундаментальное множество циклов.

    презентация, добавлен 09.09.2017

  • Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.

    методичка, добавлен 29.09.2017

  • Оценка радиального критерия предфрактального графа, порожденного затравкой-звездой. Создание полиномиального алгоритма размещения центра абстрактного математического объекта, при сохранении смежности старых ребер. Анализ вычислительной сложности системы.

    статья, добавлен 26.05.2017

  • Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.

    статья, добавлен 19.01.2018

  • Понятие графа, деревья и циклы, их простейшие свойства. Алгоритмы выделения минимального остовного дерева нагруженного графа с помощью алгоритма Прима и Краскала. Составление блок-схемы и текста реализации программы, ее листинг, тестирование и результат.

    курсовая работа, добавлен 23.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.