Теория графов

Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.

Подобные документы

  • Рассмотрение примера графа для пояснения логики поиска всех максимальных независимых множеств. Метод генерации всех максимальных независимых множеств графа. Иллюстрация задачи о наименьшем покрытии. Поиск оптимального паросочетания в двудольном графе.

    презентация, добавлен 09.09.2017

  • Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.

    презентация, добавлен 21.09.2017

  • Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.

    курсовая работа, добавлен 23.04.2011

  • Фрактальные и предфрактальные графы. Задача распознавания предфрактального графа, порожденного парой полных затравок чередованием. Задача структурного распознавания. Моделирование сложных иерархических систем самоподобными или фрактальными графами.

    статья, добавлен 28.04.2017

  • Определение матрицы и арифметические операции над матрицами. Матричное представление линейных уравнений. Используемые инструменты MathCAD для вычислений с матрицами. Формирование уравнений цепи на основе теории графов. Топологические матрицы графа.

    курсовая работа, добавлен 28.04.2015

  • Описание бесконечно ориентированного графа. Решение задач о количестве путей на граф-решетке. Решение задач о случайных блужданиях по вершинам графа, без ограничений на достижимость, а также со смешанным и магнитным ограничениями на достижимость.

    статья, добавлен 27.07.2017

  • Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.

    курсовая работа, добавлен 04.12.2023

  • Понятие графа в математической теории и информатике, виды и область применения графов. Код Харари, сущность идеи Ф. Харари, основателя теории графов. Нахождение кратчайшего пути во взвешенном графе, восстановление дерева по заданному коду Прюфера.

    контрольная работа, добавлен 24.11.2014

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.

    контрольная работа, добавлен 07.11.2013

  • Спрощення практичної реалізації структурного аналізу схеми алгоритму. Інструменти методології дослідження, матриця суміжності графа алгоритму з виявленням структурних елементів та співвідношень між ними. Дослідження вимог технології роботи об'єкта.

    статья, добавлен 12.08.2022

  • Построение модели составного кластера на один период и составного динамического суперкластера. Изучение методов анализа и визуализации текстов. Построение модели динамического графа референций. Динамический граф референций для корпуса RuNeWC и ASOAIF.

    дипломная работа, добавлен 28.08.2016

  • Розробка й обґрунтування нових алгоритмів з оцінками для екстремальних задач покриття графа типовими підграфами. Обґрунтування зв'язку задачі покриття графа типовими підграфами і проблеми знаходження всіх розв'язків лінійного діофантового рівняння.

    автореферат, добавлен 15.07.2014

  • Использование дерева решения, которое позволяет представить структуру рассматриваемых альтернатив и специфику воздействий связей внешней среды в виде графа, который не имеет циклов. Исследование набора вершин и дуг, а также циклов в данном графе.

    статья, добавлен 17.08.2018

  • Составление плана перевозок продукции со склада фирмы в четыре торговые точки области, обеспечивающего минимальные издержки на перевозки. Анализ математической модели. Использование метода Дейкстры. Построение графа, соответствующего матрице смежности.

    задача, добавлен 02.09.2013

  • История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.

    курсовая работа, добавлен 14.01.2011

  • Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.

    контрольная работа, добавлен 27.03.2012

  • Диаграмма коммутационной схемы - одна из основных составляющих исходной информации системы автоматического проектирования. Гиперграф - обобщённый вид графа, в котором каждым ребром могут соединяться не только две вершины, но и любые их подмножества.

    контрольная работа, добавлен 12.06.2016

  • Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.

    статья, добавлен 20.04.2019

  • Рассмотрение особенностей проведения расчетов временных характеристик. Знакомство с задачами оптимизации на графах. Наиболее распространенные способы построения сетевого графика, анализ проблем. Характеристика полного графа с известными длинами ребер.

    задача, добавлен 03.04.2014

  • Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.

    лекция, добавлен 18.10.2013

  • Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.

    контрольная работа, добавлен 03.04.2013

  • Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.

    дипломная работа, добавлен 04.12.2019

  • Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.

    курсовая работа, добавлен 30.03.2015

  • Задача об остовных деревьях с топологическими критериями и интервальными весами. Этапы поиска наилучшего решения интервальной задачи. Численные значения множества допустимых решений и интервальной целевой функции. Формулы для реализации весов ребер графа.

    статья, добавлен 22.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.