Кривые линии и поверхности
Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.
Подобные документы
Исследование перехода от алгебраической к канонической форме записи при помощи инвариантов, параллельного переноса, поворота и алгебраических преобразований. Построение кривой в канонической и общей системах координат. Определение сечения поверхности.
курсовая работа, добавлен 11.11.2010Сущность построения аксонометрических проекций. Прямоугольная, косоугольная аксонометрия. Общие сведения о многогранниках. Построение проекций многогранника, развертка. Сведения о кривых поверхностях. Построения проекций кривых поверхностей и развертки.
реферат, добавлен 13.03.2014Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.
лекция, добавлен 01.09.2017Особенность канонических уравнений линий второго порядка. Характеристика эллипса, параболы и гиперболы. Суть отношений расстояний от любой точки до фокуса. Рассмотрение полюса полярной системы координат. Анализ способа использования энергии Солнца.
презентация, добавлен 01.03.2015Понятие об операции проецирования. Задание плоскости на комплексном чертеже. Взаимное положение прямых и плоскостей. Изображение многогранников. Способы преобразования комплексного чертежа. Кривые линии и поверхности. Аксонометрические проекции.
курс лекций, добавлен 15.09.2017Условие принадлежности точки поверхности геометрической фигуры. Проецирующее положение геометрических фигур. Построение линии пересечения геометрических фигур. Перспектива прямой линии и параллельных прямых. Рассмотрение проекции с числовыми отметками.
учебное пособие, добавлен 13.09.2017Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.
лекция, добавлен 30.11.2010Понятие плоской кривой, заданной уравнением третьей степени. Понятие эллиптической кривой. Модулярные формы и модулярные эллиптические кривые. Определение модулярной эллиптической кривой и гипотеза Таниямы. Вывод теоремы Ферма из гипотезы Таниямы.
статья, добавлен 15.09.2012Евклидова плоскость как двумерное вещественное пространство. Инварианты уравнений линий второго порядка. Гиперболы, эллипсы и параболы. Определение вида линий, центров, асимптот и диаметров. Привидение уравнений линий второго порядка к простейшему.
контрольная работа, добавлен 15.10.2013- 60. Тела вращения
Виды тел вращения. Определение цилиндра, конуса, шара. Нахождение объемов и площадей поверхностей тел вращения: фигуры, формулы расчета и правила. Доказательство теоремы об объёме шара с определенным радиусом. Понятие шарового сегмента и шарового сектора.
презентация, добавлен 12.05.2011 Понятия и свойства эллипса, его полуосей. Характеристика степени вытянутости – эксцентриситет. Центр симметрии эллипса. Перпендикулярность нормальной плоскости и касательной прямой. Расчет радиус-вектора и векторного уравнения линии в пространстве.
задача, добавлен 18.05.2015Определение поверхности первого порядка. Уравнение плоскости по точке и нормальному вектору. Математическое изображение ориентации объектов в пространстве: уравнение линии, взаимное расположение плоскостей и двух прямых, векторное равенство прямой.
лекция, добавлен 29.09.2013Теорема о проецировании прямого угла. Поверхность - множество последовательных положений некоторой линии (образующей), перемещающейся в пространстве по определенному закону. Придание чертежу поверхности наглядности. Линейчатые поверхности вращения.
презентация, добавлен 27.10.2013Пространственная кривая векторной функции. Расчет длины дуги полукубической параболы. Изучение функций скалярных уравнений. Объем тела по известной площади поперечного сечения. Изучение поверхности тела вращения. Периметры окружности и длина образующей.
лекция, добавлен 17.01.2014- 65. Тела вращения
Объемные тела, которые возникают при вращении некой плоской фигуры, которая, в свою очередь, ограничена кривой и вращается вокруг оси, лежащей в той же плоскости. Определение объёма и площади поверхности различных тел при помощи теорем Гульдина-Паппа.
контрольная работа, добавлен 11.10.2015 Определение конуса - тела, ограниченного конической поверхностью и плоскостью, пересекающей ее по замкнутой кривой. Поверхность прямого кругового конуса. Конические сечения конуса – линии пересечения секущих плоскостей с боковой поверхностью конуса.
презентация, добавлен 24.04.2012Канонические уравнения невырожденных поверхностей второго порядка и их графическая интерпретация. Коническая и цилиндрическая поверхности. Определение их форм и свойств с помощью метода сечений. Построение тела, ограниченного гиперболоидом и сферой.
лекция, добавлен 09.07.2015Особенность определения годографа вектора-функции. Характеристика нахождения выражения дифференциала дуги. Вычисление кривизны линии, заданной параметрически и уравнением в полярных координатах. Изучение эвольвентного зацепления математиком Л. Эилером.
лекция, добавлен 28.01.2016Рассмотрение плана проведения семинарских занятий. Анализ алгебраических поверхностей и их классификация. Приведение уравнений поверхностей второго порядка к каноническому виду. Исследование асимптотических направлений, пересечений, касаний, особых точек.
методичка, добавлен 25.12.2014Первая и вторая квадратичная форма. Построение проекции вектора кривизны линии на нормаль поверхности в точке, через которую проходит эта кривая. Изучение кривизны всех линий на поверхности, рассмотрение плоских сечений. Уравнение индикатрисы Дюпена.
контрольная работа, добавлен 01.09.2017В работе рассматривается способ формообразования кривых с помощью биквадратичного преобразования Г4, где прообразом задается окружность. Для получения кривых различной формы соответственно будет изменяться расположение прообраза-окружности на плоскости.
статья, добавлен 16.02.2019- 72. Задача о жуках
Использование формулы Эйлера для плоской сети в задаче о механических жуках, характеристика их свойств. Определение гладкой кривой линии без точек возврата в математике. Доказательство формулы канадского математика Хонсбергера из университета "Ватерлоо".
статья, добавлен 04.05.2012 - 73. Тела вращения
Тела вращения как тела, возникающие при вращении плоской фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости. Цилиндр и ее тело, заключенное между двумя кругами, расположенными в параллельных плоскостях и цилиндрической поверхностью.
презентация, добавлен 25.05.2015 Сущность конического сечения как геометрического места точек, удовлетворяющих уравнению второго порядка. Основные свойства эллипса, гиперболы, окружности. Определение первого члена, знаменателя геометрической прогрессии. Расчет биномиального коэффициента.
контрольная работа, добавлен 20.01.2014Понятие о простой поверхности. Эллипсоид, гиперболоид и конус вращения, их образование. Касательная плоскость в точке гладкой поверхности. Два перпендикулярных направления, в которых нормальная кривизна принимает минимальное и максимальное значения.
реферат, добавлен 17.12.2018