Кривые линии и поверхности
Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.
Подобные документы
Методика деления окружности с высокой точностью на 7 и 9 равных частей, отличная от существующих в практике способов. Графические определение длины дуги – равноделителя. Определение величины хорды, разделяющей окружность на равные семь и девять частей.
статья, добавлен 30.07.2018Изучение уравнения прямой линии с направляющим вектором. Гипербола - множество точек плоскости, для которых модуль разности расстояний до двух фиксированных фокусов постоянный. Векторная функция скалярного аргумента. Прямая линия, кривые второго порядка.
презентация, добавлен 29.10.2017Изучение гладких многообразий. Примеры замкнутых поверхностей. Теорема Эйлера о многогранниках. Определение проективной плоскости по Риману. След движения окружности по плоскости. Алгебраическая топология многообразий. Группы гомотопий и гомологий.
книга, добавлен 25.11.2013Определение понятия эллипс, его уравнение и свойства эллипса. Эллипс как центральная невырожденная кривая второго порядка и его каноническое уравнение. Формулы для определения длины дуги эллипса, а также формулы для периметра, и построение эллипса.
курсовая работа, добавлен 10.02.2014Геометрические построения, историческая справка. Построения с помощью циркуля и линейки. Общие аксиомы конструктивной геометрии. Геометрические построения одной линейкой. Аксиомы математических инструментов. Окружность и ее центр (построение Штейнера).
курсовая работа, добавлен 10.12.2011Определение понятия развертки поверхности - фигуры, полученной совмещением поверхности с плоскостью. Ознакомление с конформными, точными, развертывающимися (многогранными) и линейчатыми (цилиндрическими, коническими, а также торсовыми) поверхностями.
презентация, добавлен 04.06.2014Введение понятия функции по стандартам математического обучения в системно-деятельностном подходе. Типы уроков при реализации функциональной линии в рамках системно-деятельностного подхода. Изучение функциональной линии по различным учебным пособиям.
дипломная работа, добавлен 28.07.2018Рассмотрение K3 поверхностей, являющихся полным пересечением. Доказательства образования дивизоров в пространстве всех квартик, содержащих коники. Нахождение степени дивизоров. Нахождение числа прямых в пучках K3 поверхностей второго и третьего типа.
курсовая работа, добавлен 30.08.2016Понятие неособой точки и способы задания поверхности (параметрический, явный или неявный). Система координатных параметрических уравнений и теорема об обратной функции. Геометрическое определение градиента, формулы Ньютона - Лейбница и Стокса.
контрольная работа, добавлен 25.03.2011- 110. Особенности циклоиды
Свойства циклоиды, её геометрическое определение. Площадь и длина дуги арки циклоиды. Объём тела, полученного вращением арки. Таутохронное свойство и применение его для создания наилучшего маятника. Кривые линии до и после интегрального исчисления.
курсовая работа, добавлен 02.06.2016 Исследование уравнения окружности и ее графика в декартовой системе координат. Формирование окружности как комплексной кривой, которая формируется частично действительными переменными, а частично мнимыми. Представление направленного замкнутого контура.
статья, добавлен 26.01.2019- 112. Построение гиперболы
Исчисление коэффициентов, определяющих гиперболу или семейство прямых. Уравнения равносторонней гиперболы и споряженных гипербол. Геометрическое место точек, равноудаленных от директрисы и точки фокуса. Упрощение общего уравнения второй степени.
лекция, добавлен 26.01.2014 Метод ортогонального проецирования Г. Монжа. Плоский чертеж как результат совмещения двух плоскостей (проекций) с помощью вращения вокруг общей линии. Необходимость изучения начертательной геометрии и черчения. Описание и понятие комплексного чертежа.
реферат, добавлен 16.10.2017- 114. Высшая математика
Основные действия над матрицами. Решение произвольных систем уравнений Крамера и Гаусса. Коллинеарные и компланарные векторы. Кривые второго порядка. Аналитическая геометрия в пространстве. Поверхности вращения. Бесконечно малые функции. Графы и сети.
курс лекций, добавлен 05.03.2016 Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.
лекция, добавлен 01.09.2017Анализ явления эллипса неопределенности при бурении, теоретических и практических методик контроля размеров эллипса неопределенности при бурении. Разработка решения для оптимизации размеров эллипса неопределенности при бурении горизонтальных скважин.
дипломная работа, добавлен 11.01.2020Понятие поверхности второго порядка как геометрического места точек, декартовы прямоугольные координаты которых удовлетворяют заданному уравнению. Классификация поверхностей второго порядка. Примеры записей уравнения однополостного гиперболоида.
курсовая работа, добавлен 15.11.2013Расчет угла между прямой и плоскостью. Определение уравнения по геометрическим свойствам поверхности. Вычисление свойств поверхности по виду уравнения. Функции сферы, эллипсоида, параболоида, гиперболоида, цилиндрической и конической поверхности.
лекция, добавлен 29.09.2013Специальные свойства геометрических объектов, изучаемых в дифференциальной геометрии. Определение и применение геодезических линий. Прямолинейные образующие конуса с выколотой вершиной и цилиндра как пример геодезических линий на поверхности; их свойства.
курсовая работа, добавлен 05.01.2018- 120. О бутылке Клейна
Изучение бутылки Клейна как склейки двух листов Мебиуса вдоль края евклидовом пространстве. Определение вектора нормали вдоль средней окружности. Построение поверхности бутылки Клейна с использованием математического пакета. Поиск и расчет линии края.
статья, добавлен 05.10.2014 Функциональная зависимость между пропорциональными величинами. Основные характеристики и свойства гиперболы. Форма и расположение квадратной параболы в системе координат. Графики тригонометрических функций вокруг биссектрисы 1-го координатного угла.
контрольная работа, добавлен 15.01.2014Актуальность применения определенного интеграла и его приложений, использование в математике, физике, механике. Решение дифференциальных уравнений практического содержания. Статический момент и координаты центра тяжести плоской кривой, плоской фигуры.
курсовая работа, добавлен 18.03.2015Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.
методичка, добавлен 30.01.2016Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.
учебное пособие, добавлен 19.12.2013Рассмотрение линий и пучков второго порядка на проективной плоскости. Аффинная геометрия с проективной точки зрения. Диаметральные плоскости, как полярные плоскости несобственных точек. Проективная классификация вещественных поверхностей второго порядка.
курсовая работа, добавлен 22.01.2015