Математические основы теории автоматического управления
Решение дробно-рациональных и импульсных функции. Преобразование Фурье и Лапласа. Операторный метод решения дифференциальных уравнений. Понятие линейного динамического звена и его временные характеристики. Частотные характеристики динамического звена.
Подобные документы
Понятие показательной функции и методы построения ее графиков. Основные свойства функции: четность; убывание; ограничение сверху и снизу; непрерывность. Определение логарифмической функции в математическом анализе и теории дифференциальных уравнений.
презентация, добавлен 05.03.2012- 27. Заметка о необходимости создания инструментальных средств для решения дифференциальных уравнений
Численное решение дифференциальных уравнений как интерактивный процесс взаимодействия человека или неформальных и формальных процедур по поиску аналитического описания интегральной кривой или ее вида. Традиционный и нетрадиционный процесс решения дифур.
статья, добавлен 25.08.2020 Разработка методики получения приближенных аналитических решений исходных дифференциальных уравнений пограничных слоев, позволяющей получать решения практически с заданной степенью точности. Условия использования уравнений Прандтля и Польгаузена.
статья, добавлен 31.08.2018Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.
статья, добавлен 31.05.2013Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.
презентация, добавлен 09.07.2015Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Динамическое программирование в математике и теории вычислительных систем, условия его применимости для решения задач рекурсивным способом. Разработка электронного пособия для формирования умений и навыков по решению задач динамического программирования.
курсовая работа, добавлен 25.04.2011Пример решения задачи линейного программирования с ограничениями-равенствами. Решение матрицы системы линейных уравнений. Вариант задачи линейного программирования в общем случае (при произвольном числе свободных переменных), применение симплекс-метода.
контрольная работа, добавлен 25.10.2009Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Задачи управления с дискретным временем, исследуемые методом динамического программирования. Метод Беллмана в моделях оптимального управления и транспортного процесса. Численный алгоритм решения уравнения, нахождение оптимальной стратегии управления.
дипломная работа, добавлен 15.09.2018Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.
статья, добавлен 21.09.2016Дискретное преобразование Фурье. Уменьшение вычислительных затрат при использовании быстрого преобразование Фурье с прореживанием по времени и по частоте. Процедура объединения, граф "Бабочка", алгоритм с замещением. Применение алгоритмов в радиофизике.
курсовая работа, добавлен 30.03.2015Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
лекция, добавлен 29.09.2014Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.
курс лекций, добавлен 11.10.2014Особенности использования преобразования Меллина и теорию вычетов. Метод Галеркина как запись исходных дифференциальных уравнений в слабой форме. Амплитудные функции ряда Фурье. Пример расчета показателей сингулярности в вершине анизотропного конуса.
статья, добавлен 02.11.2018Переходные характеристики электрических цепей. Понятие устойчивости по Ляпунову А.М. Влияние корней характеристического уравнения АСУ на составляющие ее свободного движения. Теория линейных систем автоматического регулирования в примерах и задачах.
контрольная работа, добавлен 14.03.2019Методика решения интегральных уравнений типа свертки, их классификация. Краевые задачи типа Карлемана для полосы, задача Карлемана с дробно рациональным коэффициентом и с интегральным условием. Особенности сингулярных интегральных уравнений и их решение.
дипломная работа, добавлен 06.07.2014Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Проведение исследования основных нелокальных краевых задач для дифференциальных и псевдодифференциальных уравнений. Характеристика важнейших преобразований Фурье по пространственным переменным. Существенная особенность изучения параболических заданий.
статья, добавлен 30.10.2016Модуль комплексной амплитуды как линейчатый спектр периодической функции. Связь между спектрами дискретизированного и непрерывного сигналов. Быстрое преобразование Фурье с прореживанием по времени. Определение числа итераций алгоритма, расчет множителя.
курсовая работа, добавлен 21.06.2019Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.
статья, добавлен 02.02.2019Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018