Основы теории графов

Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".

Подобные документы

  • Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.

    учебное пособие, добавлен 15.10.2016

  • Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.

    статья, добавлен 29.04.2017

  • Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.

    курсовая работа, добавлен 30.03.2015

  • Спрощення практичної реалізації структурного аналізу схеми алгоритму. Інструменти методології дослідження, матриця суміжності графа алгоритму з виявленням структурних елементів та співвідношень між ними. Дослідження вимог технології роботи об'єкта.

    статья, добавлен 12.08.2022

  • Розробка й обґрунтування нових алгоритмів з оцінками для екстремальних задач покриття графа типовими підграфами. Обґрунтування зв'язку задачі покриття графа типовими підграфами і проблеми знаходження всіх розв'язків лінійного діофантового рівняння.

    автореферат, добавлен 15.07.2014

  • Определение зависимости метрических характеристик от траектории порождения затравки. Проведение исследования оценок для диаметра и радиуса взвешенных предфрактального и фрактального графов. Главная особенность выявления расстояний между вершинами.

    статья, добавлен 19.01.2018

  • Основные возбудители инфекционных болезней. Построение математической модели распространения инфекционных болезней. Определение диаметра предфрактального графа, моделирующего распространение инфекции. Спектры предфрактальных графов с затравками-звездами.

    статья, добавлен 15.05.2017

  • Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.

    учебное пособие, добавлен 15.10.2016

  • Розгляд задачі побудови максимального простого ланцюга графа. Означення серединних умов типу 4 і 5 для випадку взаємної залежності вершин. Формулювання твердження про властивості конструктивної повноти зв’язаних серединних умов щодо вершин і шляхів.

    статья, добавлен 30.01.2017

  • Интегральные представления и асимптотика числа помеченных связных разреженных графов. Некоторые необходимые условия хроматичности многочлена. Метод сжатия-разжатия для перечисления графов. Упрощение некоторых формул для числа карт на поверхностях.

    автореферат, добавлен 17.12.2017

  • Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.

    контрольная работа, добавлен 07.11.2013

  • Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.

    доклад, добавлен 29.12.2014

  • Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.

    дипломная работа, добавлен 04.12.2019

  • Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.

    курсовая работа, добавлен 23.04.2011

  • Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.

    контрольная работа, добавлен 13.04.2012

  • История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.

    курсовая работа, добавлен 29.01.2010

  • Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.

    методичка, добавлен 24.03.2015

  • Построение модели составного кластера на один период и составного динамического суперкластера. Изучение методов анализа и визуализации текстов. Построение модели динамического графа референций. Динамический граф референций для корпуса RuNeWC и ASOAIF.

    дипломная работа, добавлен 28.08.2016

  • Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.

    контрольная работа, добавлен 03.04.2013

  • Изучение истории возникновения теории графов, основные понятия и виды графов. Теория графов в транспортных, коммуникационных и геоинформационных системах. Применение теории графов в медицине, биологии, физике, химии, астрономии, истории, искусстве.

    научная работа, добавлен 03.05.2019

  • Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.

    курсовая работа, добавлен 22.06.2014

  • Исследование помеченных связных графов с заданным числом вершин и точек сочленения. Выведение формулы для энумератора разреженных гомеоморфно несводимых графов с заданным цикломатическим числом. Определение их асимптотики и интегральных представлений.

    автореферат, добавлен 02.03.2018

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.

    контрольная работа, добавлен 18.12.2015

  • Диаграмма коммутационной схемы - одна из основных составляющих исходной информации системы автоматического проектирования. Гиперграф - обобщённый вид графа, в котором каждым ребром могут соединяться не только две вершины, но и любые их подмножества.

    контрольная работа, добавлен 12.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.