Метод наименьших квадратов
Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.
Подобные документы
Правила деления многочленов и их представление в канонической форме. Нахождение наибольшего общего делителя двух многочленов и двух натуральных чисел. Возможности упрощения вычислений наибольшего общего делителя в алгоритме Евклида, примеры решения задач.
контрольная работа, добавлен 26.10.2012Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.
контрольная работа, добавлен 29.03.2013Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.
статья, добавлен 02.02.2019Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.
реферат, добавлен 20.05.2013Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.
курсовая работа, добавлен 08.07.2012- 31. Многочлены
Многочлен как один из важнейших классов элементарных функций. Целый ряд преобразований в математике, связанный с изучением многочленов. Коэффициенты многочлена из определённого коммутативного кольца. Множества, определённые как решения систем многочленов.
контрольная работа, добавлен 23.04.2011 Метод наименьших квадратов: сущность и основное содержание, особенности использования в решении задачи нахождения одной результирующей прямой и анализе экспериментальных результатов на принадлежность нескольким прямым. Оценка эффективности метода.
доклад, добавлен 07.08.2013Особенности состава и содержания приводимых и неприводимых многочленов. Признаки неприводимости многочленов по Эйзенштейну, Дюма и Ньютону. Использование полиномов третьей и четвёртой степени при моделировании временных рядов экономических показателей.
курсовая работа, добавлен 13.11.2016Понятие генерирующего многочлена. Построение генерирующих многочленов для прямого произведения группы меньших порядков, конкретных многочленов с рациональными коэффициентами для циклической группы восьмого порядка. Математическое описание их свойств.
контрольная работа, добавлен 25.11.2017Получение характеристических свойств существования элементов наилучшего приближения для подпространств L бесконечной размерности в банаховом пространстве у которой аннулятор сепарабельный, содержит минимальное тотальное подпространство гиперплоскости.
статья, добавлен 07.08.2020Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.
учебное пособие, добавлен 05.03.2010Анализ аппроксимации как процесса приближения функции f(x) к более простой функции. Анализ интерполяции как процесса нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Определение интерполяционного полинома.
контрольная работа, добавлен 11.02.2018Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.
книга, добавлен 28.12.2013Многочлен или полином: алгебраическая сумма одночленов. Операции над многочленами, их кольцо над областью целостности. Схема Горнера и теорема Безу. Вычисление наибольшего общего делителя. Наименьшее общее кратное. Сравнения многочленов по многочлену.
реферат, добавлен 06.03.2010Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Определение многочленов Чебышева, их краткая характеристика и особенности. Рассмотрение случая произвольного отрезка. Описание дифференциального уравнения многочленов и квадратурной формулы, сравнение их погрешностей. Общее понятие термина алгоритм.
курсовая работа, добавлен 14.04.2014Исследование периодической функции, ее разложение в ряд Фурье. Вычисление значений тригонометрических полиномов в заданных точках. Построение графика многочлена третьей и восьмой степени. Определение погрешностей и расчет среднеквадратичных коэффициентов.
задача, добавлен 23.11.2016Симметрия геометрических фигур и группы движений плоскости. Умножение движений, имеющих общую неподвижную точку. Симметрия многочленов от двух переменных. Квадратурные формулы для окружности. Многочлены, обладающие симметрией правильных многогранников.
методичка, добавлен 13.01.2014Развитие методов регуляризации решения систем линейных уравнения (СЛАУ). Предложение модифицированного метода наименьших квадратов решения СЛАУ, в основе которого лежит использование q-дифференцирования. Выполнение задач в математическом пакете Matlab.
статья, добавлен 27.07.2017Условия разложения функций в ряды Фурье по классическим ортогональным многочленам. Формулировка и доказательство аналогов леммы М.В. Федорюка. Вывод асимптотических формул для многочленов Чебышева-Эрмита, Якоби, Лежандра-Лагерра и их производных.
автореферат, добавлен 10.12.2013Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.
курсовая работа, добавлен 06.01.2014Правила проведения количественного анализа. Расчёт неизвестных величин по результатам измерений, содержащих случайные ошибки. Оценка отклонения точки от прямой. Основной принцип метода наименьших квадратов. Построение градуировки в спектрофотометрии.
презентация, добавлен 29.05.2020Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
презентация, добавлен 20.01.2015Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.
контрольная работа, добавлен 20.06.2012