Метод Гаусса
Сутність і зміст методі Гауса, напрямки та сфери його практичного застосування: розв’язання загальної системи лінійних рівнянь, зведення до східчастого виду послідовним застосуванням елементарних перетворень. Зв'язок з розкладанням матриці на множники.
Подобные документы
Дослідження вироджених нелінійних різницевих рівнянь у банахових просторах. Побудова обмеженого напівінваріантного многовиду та наближене відшукання періодичних розв’язків рівнянь вказаного типу. Приклади лінійних різницевих рівнянь у просторі m.
автореферат, добавлен 09.08.2014- 77. Лінійний простір
Розгляд векторів як напрямлених відрізків. Особливості означення лінійного простору. Множина розв’язків однорідної системи математичних рівнянь. Лінійно залежні та незалежні системи векторів. Елементарні перетвореннями рядків системи лінійних рівнянь.
лекция, добавлен 05.05.2017 Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Специфіка системи інтегральних рівнянь для ймовірностей нерозорення на нескінченному інтервалі часу для процесу ризику у випадковому марковському середовищі. Характеристика та особливості класичного актуарного інтегрального рівняння типу Вольтерра.
автореферат, добавлен 28.12.2015Дослідження розв’язностей та побудова розв’язків задач з нелокальними крайовими умовами за часовою змінною для рівнянь та систем рівнянь із частинними похідними першого порядку за часовою змінною і порядку за просторовими змінними сталими коефіцієнтами.
автореферат, добавлен 14.09.2014Керовані системи диференціальних рівнянь з частинними похідними першого порядку з однаковими головними частинами. Методи розв'язання задачі про відображення траєкторій лінійних керованих систем на траєкторії канонічної системи без заміни керування.
автореферат, добавлен 28.07.2014Методика побудови загального псевдорозв’язку систем лінійних алебраїчних рівнянь. Аспекти псевдообернення матриць на системи з розподіленими параметрами для розв’язання оберненних задач динаміки цих систем в обмежених просторово-часових областях.
автореферат, добавлен 11.11.2013Множина псевдорозв’язків систем блочних лінійних алгебраїчних рівнянь, прямокутні блоки-матриці яких поширюються в горизонтальному, вертикальному та горизонтально-вертикальному напрямках задану кількість разів. Результати псевдообернення матричних рядків.
автореферат, добавлен 05.01.2014Основні поняття і визначення диференціальних рівнянь вищих порядків. Метод виключення (зведення нормальної системи до прикладу n-го порядку). Лінійні системи диференціальних рівнянь. Системи у симетричній формі. Однорідне і неоднорідне рівняння.
учебное пособие, добавлен 16.10.2014Основні поняття та означення диференціального рівняння першого порядку, теорема про достатні умови існування та єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Загальний метод введення параметра. Розв’язок неповних рівнянь.
контрольная работа, добавлен 13.04.2011Методи наближення функцій. Метод найменших квадратів як ефективний спосіб розв'язання задачі апроксимації функцій, його суть та основні формули. Лініалізація, розв’язання та побудова графіків функцій. Області застосування методу найменших квадратів.
курсовая работа, добавлен 17.12.2016Табличний, графічний та аналітичний способи задавання функції, їх властивості. Способи розв'язання текстових задач, заданих множиною точок координатних площин. Область визначення функції, заданої формулою. Алгоритм розв’язання рівнянь графічним способом.
курсовая работа, добавлен 25.04.2020Огляд методів гарантованого оцінювання значень лінійних функціоналів, визначених на розв’язках вироджених крайових задач Неймана для еліптичних рівнянь і на їх правих частинах. Доведення однозначної розв’язності систем інтегро-диференціальних рівнянь.
автореферат, добавлен 27.07.2014Властивості ступенів і коренів. Дії з радикалами. Обчислення ірраціональних виразів в математиці. Загальні відомості про алгебраїчні рівняння. Задачі на використання дискримінанта. Розміщення коренів квадратного рівняння. Розклад многочлена на множники.
лекция, добавлен 24.01.2014- 90. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Доведення теорем про пов’язані з лінійною задачею Коші функціонально-диференціальні нерівності. Отримання ряду умов, які гарантують однозначну розв’язність початкової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду.
автореферат, добавлен 29.07.2014 Дослідження умов асимптотичної стійкості в середньому та середньому квадратичному розв'язках лінійних різницевих рівнянь з марковськими коефіцієнтами. Одержання достатніх умов асимптотичної стійкості за допомогою функцій Ляпунова з матричним аргументом.
статья, добавлен 14.09.2016Встановлення умов розв’язуваності крайових задач для лінійних та слабконелінійних інтегро-диференціальних рівнянь з параметрами та обмеженнями і розробка ефективних методів проекційно-ітеративного типу побудови їх розв’язків. Теорії інтегральних рівнянь.
автореферат, добавлен 20.07.2015Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.
автореферат, добавлен 27.04.2014Опис методу знаходження лінійних рівнянь, в яких матриця симетрична. Способи побудування симетричної матриці. Розв'язування СЛАР методом квадратних коренів. Проміжний та заключний контроль, введенням контрольних і рядкових сум у лінійному рівнянні.
лабораторная работа, добавлен 07.10.2010Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
автореферат, добавлен 10.01.2014Дослідження математичних методів ідентифікації динамічних систем. Реалізація алгоритму методу ідентифікації моделі авторегресії-ковзного середнього АРКС. Розв’язання системи лінійних рівнянь типу Юла-Уокера для визначення р та q параметрів авторегресії.
статья, добавлен 23.06.2016Генерування правил ЯКЩО–ТО на основі розв’язання рівнянь нечітких відношень. Множина лінгвістичних розв’язків рівнянь нечітких відношень, отримана шляхом переходу до сполученої системи термів. Оптимальна геометрія вхідних термів для кожного розв’язку.
статья, добавлен 26.07.2016Використання методу ітерації для розв'язання систем нелінійних рівнянь. Зміни послідовного наближення x при різних варіантах взаємного розташування графіка і прямої. Положення ітерації при різних значеннях функції та похідної. Умови зациклювання ітерацій.
лекция, добавлен 06.06.2009Основні найпростіші тригонометричні та лінійні рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розкладання рівняння на множники. Рівність однойменних функцій. Системи тригонометричних рівнянь. Рішення, засновані на обмеженості функцій.
лекция, добавлен 26.01.2014Розв'язання системи лінійних алгебраїчних рівнянь. Розробка нового геометричного підходу до побудови базисних функцій. Методика геометричного моделювання тривимірних скінчених елементів сирендипової сім'ї. Удосконалення правил випадкових блукань.
автореферат, добавлен 24.06.2014