Алгебраические критерии устойчивости линейных систем: Стодола, Гурвица. Частотные критерии устойчивости: метод D-разбиения, критерий Михайлова

Ознакомление с выражением характеристического уравнения, главного диагонального минора матрицы Гурвица. Рассмотрение свойства годографа. Определение диапазона изменения (приращения) аргумента. Анализ отредактированных графиков годографов Михайлова.

Подобные документы

  • Решение системы линейных уравнений методом Гаусса, нахождение предела и производной функции. Составление уравнения касательных, схематичное построение графиков. Вычисление расширенной матрицы, определение промежутков знаков постоянства и экстремумов.

    контрольная работа, добавлен 21.10.2014

  • Система с постоянной положительной матрицей. Линейная функция Ляпунова. Прикладные задачи с положительными переменными. Условие устойчивости общих линейных систем. Траектории агентов в притягивающем параллелепипеде. Функция Ляпунова для уравнения.

    статья, добавлен 11.01.2018

  • Исследование асимптотической устойчивости и устойчивости в среднем квадратичном линейных и нелинейных систем со случайной структурой и случайным условием скачка фазового вектора. Анализ задач управления и стабилизации стохастических систем со скачками.

    автореферат, добавлен 29.03.2013

  • Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.

    контрольная работа, добавлен 19.01.2014

  • Описание работы следящей системы и составление дифференциальных уравнений и передаточных функций. Определение критического значения. Построение кривой D-разбиения в плоскости двух параметров и кривых Михайлова для значений коэффициента усиления.

    курсовая работа, добавлен 10.01.2013

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Этапы нахождение определителя матрицы, минора и алгебраического дополнения к элементам матрицы. Особенности решение системы линейных алгебраических уравнений методами Крамера и Гаусса. Нахождение собственных чисел и собственных векторов матрицы.

    контрольная работа, добавлен 11.04.2009

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Замкнутые и разомкнутые системы. Построение линеаризованной модели для звена, которое описывается нелинейным дифференциальным уравнением. Поиск импульсной характеристики. Определение значений устойчивости замкнутой системы при помощи критерия Гурвица.

    контрольная работа, добавлен 25.11.2017

  • Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.

    курсовая работа, добавлен 05.06.2014

  • Решение систем линейных алгебраических уравнений как одна из основных задач вычислительной линейной алгебры, рассмотрение основных способов. Общая характеристика метода Гаусса. Анализ схемы единственного деления. Знакомство с особенностями метода Зейделя.

    курсовая работа, добавлен 18.10.2013

  • Понятие ранга матрицы как наивысшего порядка отличных от нуля миноров матрицы. Определение базисного минора. Сущность элементарных преобразований. Умножение ряда (строки или столбца) на число, не равное нулю. Получение эквивалентной и ступенчатой матрицы.

    лекция, добавлен 26.01.2014

  • Определение и особенности нелинейных систем. Методы фазовых портретов и гармонической линеаризации. Исследование вибрационной помехоустойчивости систем управления. Устойчивость нелинейных систем, метод Ляпунова. Критерий абсолютной устойчивости Попова.

    реферат, добавлен 22.07.2015

  • Общее понятие матрицы, ее разновидности. Определители n-го порядка и их основные свойства. Алгебраические дополнения и миноры. Способ получения обратной матрицы, ее транспонирование. Алгоритм нахождения ранга матрицы. Виды операций над матрицами.

    контрольная работа, добавлен 21.05.2013

  • Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.

    курс лекций, добавлен 20.08.2017

  • Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.

    контрольная работа, добавлен 20.03.2017

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.

    контрольная работа, добавлен 24.12.2014

  • Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.

    контрольная работа, добавлен 23.04.2011

  • Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.

    реферат, добавлен 06.03.2010

  • Определение связи между вектором входа и векторами состояния и выхода. Примеры получения и преобразования моделей. Определение характеристического уравнения объекта. Расчет эквивалентной матрицы передаточных функций, которая связывает векторы состояния.

    лекция, добавлен 22.07.2015

  • Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.

    научная работа, добавлен 22.07.2014

  • Стохастическая версия W-метода, который восходит к работам Азбелева. Теоремы, которые можно рассматривать как фундамент общей схемы анализа устойчивости линейных стохастических функционально-дифференциальных уравнений. Пример скалярного уравнения Ито.

    статья, добавлен 26.04.2019

  • Системы линейных дифференциальных уравнений. Выпуклое и нелинейное программирование. Корни характеристического многочлена. Совокупность серий для всех собственных чисел матрицы. Метод неопределенных коэффициентов. Неподвижные точки и отображения.

    учебное пособие, добавлен 26.04.2014

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.