Модели анализа и прогнозирования производственных и социально-экономических систем

Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

Подобные документы

  • Базовый метод регрессионного анализа для оценки неизвестных параметров моделей по выборочным данным: история, свойства оценок. Парная линейная регрессия; взвешенный метод наименьших квадратов; авторегрессионное преобразование. Применение МНК в экономике.

    реферат, добавлен 10.10.2012

  • Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.

    шпаргалка, добавлен 25.02.2014

  • Оценка существенности параметров уравнения множественной регрессии и корреляции. Классификация систем эконометрических уравнений. Создание экономической модели значений котировок доллара по отношению к рублю с целью повышения прибыльности предприятий.

    контрольная работа, добавлен 23.11.2016

  • Вычисление коэффициента корреляции между заработной платой и прожиточным минимумом. Построение доверительных полос для уравнения регрессии. Дисперсионный анализ и определение параметров линейной регрессионной модели методом наименьших квадратов.

    контрольная работа, добавлен 21.12.2013

  • Построение поля корреляции результата (общая сумма ущерба) и фактора (расстояние до ближайшей пожарной станции). Определение параметров уравнения парной линейной регрессии, коэффициента корреляции. Значение критерия Стьюдента для коэффициента регрессии.

    контрольная работа, добавлен 19.10.2011

  • Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.

    задача, добавлен 16.03.2014

  • Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.

    контрольная работа, добавлен 01.03.2017

  • Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.

    лекция, добавлен 29.09.2013

  • Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Оценка существенности параметров линейной регрессии и корреляции. Интервалы прогноза по линейному уравнению регрессии. Критерии оценки тесноты связи. Нелинейная регрессия.

    реферат, добавлен 21.04.2010

  • Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.

    контрольная работа, добавлен 14.11.2011

  • Построение уравнения регрессии с помощью метода наименьших квадратов. Матричный подход в регрессионном анализе. Оценка вариации уравнения регрессии и проверка гипотез о наклоне и коэффициенте корреляции. Оценка математического ожидания значений отклика.

    учебное пособие, добавлен 22.11.2012

  • Расчет и сущность параметров уравнений линейной и нелинейной парной регрессии. Связь доходов от международных перевозок и длины дороги с помощью показателей корреляции и детерминации. Оценка аппроксимации качества уравнения регрессии доходов от перевозок.

    курсовая работа, добавлен 09.06.2015

  • Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.

    задача, добавлен 20.06.2016

  • Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.

    контрольная работа, добавлен 05.02.2016

  • Модель парной регрессии. Оценка надежности парной регрессии и корреляции. Интервальная оценка для коэффициента корреляции. Доверительные интервалы для зависимой переменной. Анализ коррелированности отклонений. Проверка наличия гетероскедастичности.

    курсовая работа, добавлен 21.02.2014

  • Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Расчет остаточной суммы квадратов. Оценка дисперсии остатков. Вычисление коэффициента детерминации, проверка значимости уравнения регрессии.

    задача, добавлен 11.06.2013

  • Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.

    контрольная работа, добавлен 30.11.2013

  • Понятие и виды нелинейных моделей регрессии. Приведение нелинейной функции к линейному виду с помощью замены переменных и логарифмирования. Анализ влияния уровня инфляции на количество безработных с помощью парной нелинейной регрессии и линеаризации.

    курсовая работа, добавлен 22.05.2012

  • Эконометрика как наука, изучающая количественные закономерности и взаимосвязи в экономике. Методика расчета стандартных ошибок коэффициентов парной линейной регрессии. Эконометрический анализ при нарушении предпосылок метода наименьших квадратов.

    учебное пособие, добавлен 04.06.2015

  • Сущность эконометрики, характеристика приемов, методов и основных моделей, используемых для количественного выражения общих закономерностей. Особенности этапов процесса моделирования. Построение и описание линейной модели парной регрессии и корреляции.

    учебное пособие, добавлен 01.04.2013

  • Оценка параметров уравнения множественной регрессии методом наименьших квадратов. Проверка регрессии на гетероскедастичность. Нахождение коэффициента автокорреляции остатков. Сравнение факторной и остаточной дисперсии в расчете на одну степень свободы.

    контрольная работа, добавлен 01.06.2020

  • Методы расчета линейного коэффициента парной корреляции. Оценка статистической значимости коэффициентов множественного уравнения регрессии с помощью критерия Стьюдента. Проверка системы эконометрических уравнений на необходимое условие идентификации.

    контрольная работа, добавлен 12.12.2015

  • Расчет параметров уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии. Оценка средней ошибки аппроксимации качества уравнений. Оценка статистической надежности результатов моделирования.

    контрольная работа, добавлен 16.05.2016

  • Оценка связи порядковых переменных с помощью непараметрических ранговых коэффициентов Спирмена и Кендалла. Модели метода наименьших квадратов с детерминированной независимой переменной. Оценка дисперсии независимой переменной. Сложение временных рядов.

    статья, добавлен 28.07.2020

  • Особенности применения метода наименьших квадратов для минимизации ошибки как одного из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Основные виды уравнений множественной регрессии.

    реферат, добавлен 24.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.