Модели анализа и прогнозирования производственных и социально-экономических систем

Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

Подобные документы

  • Парная линейная регрессия. Вычисление неизвестных параметров с помощью метода наименьших квадратов. Коэффициенты корреляции, эластичности и аппроксимации. Создание нелинейной регрессии степенного и показательного вида. Уравнение равносторонней гиперболы.

    контрольная работа, добавлен 27.06.2012

  • Знакомство со способами построения экспериментальных точек в декартовой системе координат. Общая характеристика ключевых этапов и проблем расчета коэффициентов парной корреляции. Рассмотрение основных особенностей линейной, а также нелинейной регрессии.

    контрольная работа, добавлен 02.11.2020

  • Недостатки использования моделей множественной линейной регрессии, статистических и стохастических моделей в описании экономических процессов. Необходимость новых методов математического моделирования на базе теории нечетких множеств и нейронных сетей.

    статья, добавлен 24.07.2013

  • Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.

    методичка, добавлен 16.05.2016

  • Определение линейного коэффициента парной корреляции, уравнение линейной регрессии. Построение степенной модели путем логарифмирования частей уравнения. Построение гиперболической модели, коэффициент детерминации и средняя относительная ошибка.

    контрольная работа, добавлен 10.06.2009

  • Принципы использования алгоритмов вычисления оценок для решения задач распознавания. Свойства произвольной функции по методу наименьших квадратов для разных видов уравнений множественной регрессии. Косвенный МНК и его значение для линейной функции.

    контрольная работа, добавлен 06.02.2014

  • Особенности прогнозирования спроса на товары длительного пользования. Метод математического моделирования. Использование метода наименьших квадратов для идентификации параметров системы. Применение моделей кривых роста в экономическом прогрессе.

    дипломная работа, добавлен 30.10.2017

  • Построение линейного уравнения парной регрессии на основе данных о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны и о среднедневной заработной плате. Расчет коэффициента парной корреляции и средней ошибки аппроксимации.

    контрольная работа, добавлен 21.02.2011

  • Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.

    презентация, добавлен 12.07.2015

  • Построение уравнения линейной парной регрессии, оценка статистической значимости ее параметров и коэффициента корреляции. Уравнение множественной регрессии и вычисление частного коэффициента эластичности. Анализ автокорреляции уровней временного ряда.

    контрольная работа, добавлен 27.03.2015

  • Параметры линейной, степенной, показательной функций и равносторонней гиперболы. Оценка каждой модели через среднюю ошибку аппроксимации и F-критерий Фишера. Линейный коэффициент парной корреляции и средняя ошибка аппроксимации, параметры регрессии.

    контрольная работа, добавлен 05.10.2011

  • Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.

    курсовая работа, добавлен 23.11.2013

  • Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.

    контрольная работа, добавлен 16.07.2019

  • Особенности регрессионного анализа экономических моделей, его основные положения. Нахождение и оценка параметров парной регрессионной модели. Оценка значимости уравнения регрессии. Корреляционный анализ зависимости цен на недвижимость в Пермском крае.

    курсовая работа, добавлен 18.06.2015

  • Расчет параметров линейного уравнения регрессии. Особенность определения коэффициента парной корреляции. Статистическая значимость регрессионных и корреляционных величин и оценка их адекватности. Подсчет точечного и интервального прогноза прибыли.

    контрольная работа, добавлен 13.06.2017

  • Определение коэффициентов линейного уравнения регрессии. Определение числа индивидуальных значений признака. Корреляционная зависимость и уравнение регрессии. Построение системы нормальных уравнений с использованием метода наименьших квадратов.

    реферат, добавлен 24.12.2011

  • Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов. Проверка независимости остатков с помощью критерия Дарбина-Уотсона. Вычисление коэффициента детерминации. Построение степенной модели.

    контрольная работа, добавлен 23.11.2011

  • Рассмотрение модели линейной регрессии. Ознакомление с содержанием стандартного метода наибольшего правдоподобия. Получение трехдиагональной обратной матрицы при помощи гауссового исключения. Получение окончательной несмещенной оценки дисперсии.

    реферат, добавлен 26.06.2018

  • Определение особенностей матрицы парных коэффициентов корреляции. Расчет и характеристика параметров линейной парной регрессии. Изучение формулы коэффициента детерминации. Рассмотрение и анализ значимости полученных уравнений с помощью критерия Фишера.

    контрольная работа, добавлен 07.04.2016

  • Построение диаграммы рассеяния линейной парной регрессии. Проверка наличия тренда в заданных значениях прибыли фирмы. Расчет выборочного коэффициента корреляции. Оценка дисперсии случайной составляющей эконометрической модели. Прогноз величины прибыли.

    контрольная работа, добавлен 05.12.2016

  • Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.

    лабораторная работа, добавлен 06.02.2015

  • Сущность, виды и причины безработицы в России. Построение модели парной регрессии. Определение показателя эластичности. Вычисления критерия Дарбина-Уотсона и индекса Ласпейреса. Исследование остатков с применением предпосылок метода наименьших квадратов.

    дипломная работа, добавлен 18.06.2014

  • Определение и матричное представление линейной регрессии. Этапы проверки качества регрессионных моделей. Характеристика коэффициента детерминации, его основные свойства и расчётная формула. Определение скорректированного коэффициента детерминации.

    курсовая работа, добавлен 14.12.2012

  • Эконометрическое моделирование стоимости квартир в Московской области. Расчет матрицы парных коэффициентов корреляции и параметров линейной парной регрессии. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.

    контрольная работа, добавлен 26.02.2013

  • Вычисление параметров уравнений линейной регрессии. Главная особенность интерпретации рассчитанных характеристик. Основной анализ регулярной модели зависимости выручки предприятия от капиталовложений. Построение матрицы коэффициентов парной корреляции.

    контрольная работа, добавлен 20.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.