Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
Подобные документы
Абстрактне параболічне рівняння. Умови секторіальності еліптичних операторів. Неперервний інтерполяційний метод. Умови існування та єдиності розв'язків задачі Коші. Типи в банаховому просторі. Диференціювання аналітичних функцій операторного аргументу.
автореферат, добавлен 13.07.2014Вивчення поведінки на нескінченності періодичних по змінних, крім однієї, розв’язків задачі Діріхле в напівпросторі для еліптичного рівняння з періодичними коефіцієнтами високого порядку. Третя крайова задача для еліптичного рівняння другого порядку.
автореферат, добавлен 15.11.2013Достатні умови існування розв’язку узагальненої нормальної крайової задачі для квазілінійної параболічної системи з лінійною головною частиною. Використання теореми Шаудера та принципу стисних відображень. Оцінка значень спряжених операторів Ґріна.
автореферат, добавлен 25.08.2014Встановлення умов існування та єдиності локального та глобального узагальнених розв'язків гіперболічних задач Стефана для систем рівнянь першого порядку з двома незалежними змінними. Удосконалення теорії диференціальних рівнянь з частинними похідними.
автореферат, добавлен 28.10.2015- 30. Нелокальні крайові задачі для рівнянь з частинними похідними та диференціально-операторних рівнянь
Вибір функціональних просторів для кожної із поставлених нелокальних задач. Встановлення умов однозначної розв’язності нелокальних задач для рівнянь і систем зі сталими та змінними коефіцієнтами. Обгрунтування методу мінімізації у гільбертових просторах.
автореферат, добавлен 30.07.2014 - 31. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
автореферат, добавлен 29.07.2014 Встановлення існування та єдиності розв'язку оберненої задачі визначення залежного від часу коефіцієнта при похідній за часом в одновимірному параболічному рівнянні. Задача визначення невідомого коефіцієнта, коли умови перевизначення є нелокальними.
автореферат, добавлен 25.08.2015Розробка коректного розв'язку двоточкової крайової задачі про відшукання періодичного розв'язку параболічного рівняння вищого порядку з імпульсною дією. Методика постановки задачі Коші для параболічного псевдодиференціального рівняння вищого порядку.
автореферат, добавлен 26.08.2015Особливість дослідження асимптотичної поведінки розв’язків диференційних рівнянь дробового порядку. Доведення повноти системи власних та приєднаних функцій крайової задачі із лінійними та нелінійними умовами. Характеристика теореми про базисність Ріса.
автореферат, добавлен 28.12.2015Встановлення умов існування та єдиності розв'язку обернених задач для параболічного рівняння на знаходження старшого коефіцієнта, множника у вільному члені. Особливості розв'язку у випадку нелокальних та інтегральних крайових умов та умов перевизначення.
автореферат, добавлен 28.07.2014Встановлення існування та єдності класичного розв’язку оберненої задачі для параболічного рівняння з виродженням, коли невідомий залежний від часу старший коефіцієнт прямує до нуля. Знаходження умов коректної розв’язності оберненої параболічної задачі.
автореферат, добавлен 29.09.2014Встановлення умов і вигляду розв'язку асимптотичної задачі для еволюційного рівняння з неоднорідною частиною у вигляді многочлена та розв'язності деяких обернених (багатоточкових) задач для рівняння з параметрами у рефлексивному банаховому просторі.
автореферат, добавлен 28.06.2014Апріорні оцінки сильних розв’язків задачі Діріхле та мішаної задачі для лінійних еліптичних недивергентних рівнянь другого порядку загального вигляду в околі ребра області за мінімальних вимог на коефіцієнти. Теореми існування розв’язків задачі Діріхле.
автореферат, добавлен 25.06.2014Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.
реферат, добавлен 06.11.2017Дослідження існування глобальних класичних розв’язків у двофазній багатовимірній задачі Стефана для лінійного та квазілінійного рівнянь теплопровідности в задачах, які описують процеси горіння. Існування класичного розв’язку в стаціонарних задачах.
автореферат, добавлен 21.11.2013Ознайомлення з алгебраїчними методами розв’язку нелінійних диференціальних рівнянь. Теоретично-групові та симетрійні властивості, що виникають при рішенні нелінійних еволюційних задач в прикладній математиці. Засоби інваріантно-групових розв’язків.
автореферат, добавлен 23.11.2013- 42. Розв'язування задачі оптимального керування правою частиною неоднорідного бігармонічного рівняння
Дослідження задачі знаходження оптимальної функції правої частини неоднорідного бігармонічного рівняння, для розв'язування якої використовується один з варіантів градієнтного методу. Розв'язання системи інтегральних рівнянь Фредгольма першого роду.
статья, добавлен 27.09.2016 Вивчення задач з невідомими межами для гіперболічних систем квазілінійних рівнянь першого порядку щодо їхньої локальної й глобальної розв'язності. Рішення гіперболічної задачі Стефана з нелокальними крайовими умовами для системи квазілінійних рівнянь.
автореферат, добавлен 19.07.2015- 44. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язок задачі Діріхле та задачі з косою похідною для еліптичних рівнянь другого порядку. Вирішення крайової задачі та задачі Коші для параболічного рівняння. Побудова оптимального керування системами, що описуються параболічною крайовою задачею.
автореферат, добавлен 28.12.2015 Суть функціонального рівняння. Розв'язання функціонального рівняння способом заміни та утворенням системи лінійних рівнянь. Задачі про існування функції при певних умовах. Розв'язання нестандартних функціональних рівнянь. Суть графічного розв’язання.
курсовая работа, добавлен 02.01.2014Викладення диференціального числення функцій однієї змінної: означення похідної; геометричний, механічний і економічний змісти похідної; доведення формул диференціювання; похідні вищих порядків; диференціал функції; теореми диференціального числення.
курс лекций, добавлен 30.04.2014Задачі Коші в класах початкових умов, які є узагальненими функціями з просторів і дослідженню властивостей фундаментального розв’язку. Простори основних та узагальнених функцій і властивості перетворення Фур’є, згорток, згортувачів та мультиплікаторів.
автореферат, добавлен 30.07.2014Поняття диференціального рівняння, задача, ознаки і теорема О.Л. Коші, її геометричний зміст. Ознаки та приклади загального або частинного розв’язку (інтеграли) диференціального рівняння першого порядку та з відокремленими і відокремлюваними змінними.
лекция, добавлен 01.05.2014Поява диференціальних рівнянь. Методи збурень, які використовуються в механіці. Умови існування періодичних розв’язків. Теореми про граничні значення. Нелінійні диференціальні рівняння другого порядку. Методи розв’язання деяких типів нелінійних рівнянь.
курсовая работа, добавлен 22.06.2012Одержання нових інтегральних оцінок точності методу перетворення Келі для наближення операторних експоненти і косинуса та доведення їх непокращуваності за порядком. Побудова нового методу дискретизації задачі Коші для неоднорідного рівняння 1-го порядку.
автореферат, добавлен 28.08.2014