Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
Подобные документы
Побудування розв’язку у просторі узагальнених функцій однорідної задачі Рімана для півплощини в особливому випадку. Доведення теорем його існування та єдиності. Отримання інтегрального зображення в смузі. Запропонування підходу до побудови розв’язків.
автореферат, добавлен 27.08.2014Дослідження властивостей екстремальних точок області припустимих розв'язків. Модифікація методу гілок та границь для пошуку глобального оптимального розв'язку задачі. Математичне забезпечення задачі компонування обладнання у цехах збагачувальних фабрик.
автореферат, добавлен 25.02.2014Характеристика підходів до розв’язання рівняння коливань математичного маятника з квадратичним тертям. Дослідження варіанту наближеного розв’язання оберненої задачі ідентифікації коефіцієнта опору середовища. Обчислення амплітуд затухаючих коливань.
статья, добавлен 25.03.2016Побудова множини позиційних керувань, що розв'язують задачу синтезу для лінійного диференціального рівняння та нелінійного рівняння за першим наближенням у гільбертових просторах. Розв'язання задачі позиційного синтезу обмежених інерційних керувань.
автореферат, добавлен 24.02.2014Характерні властивості функцій першого класу Бера, зв’язок між морановими і наміоковими просторами. Умови залежності від певної кількості координат нарізно неперервних функцій двох сукупних змінних. Рівняння з частинними похідними при мінімальних вимогах.
автореферат, добавлен 29.08.2015Встановлення умов коректної локальної і глобальної розв'язності гіперболічної задачі Стефана для систем рівнянь першого порядку з двома незалежними змінними. Визначення умов її існування та єдиності для квазілінійної системи рівнянь у криволінійній смузі.
автореферат, добавлен 23.08.2014Загальні поняття інтегральних нерівностей в теорії диференціальних рівнянь: лема Гронуола – Беллмана та її частинний випадок, дослідження єдиності розв`язку задачі Коші, узагальнення і посилення леми. Умови Ліпшиця та Пікара при доведенні теореми.
контрольная работа, добавлен 14.06.2009Метод складання диференціального рівняння у частинних похідних, розв’язком якого має бути поверхня у просторі, що дозволить визначати відбивальні поверхні з точковими фокусами. Алгоритми розв’язання рівняння з метою визначення квазіеліпса на площині.
автореферат, добавлен 10.08.2014Дослідження встановлення достатніх умов існування нетривіального розв'язку з наперед заданою кількістю нулів що прямує до нуля на нескінченності для нелінійного сингулярного крайового диференціального рівняння другого порядку досить загального вигляду.
автореферат, добавлен 07.08.2014Побудова еквівалентної крайової задачі з параметрами та лінійними крайовими умовами, що розглядається з певною системою визначальних рівнянь. Схема розв’язків багатоточкових крайових задач шляхом зведення їх до двоточкових, застосовуючи параметризацію.
автореферат, добавлен 25.08.2014Розробка і застосування методики дослідження обернених задач, що базується на зведенні обернених задач до систем операторних рівнянь другого роду і аналізі методу параметрикса. Дослідження нехарактеристичної задачі Коші для рівняння теплопровідності.
автореферат, добавлен 15.11.2013Розробка чисельних методів для розв’язування задач вибору оптимальної структури в системах прискорення та фокусування. Характеристика особливостей диференціального рівняння Беллмана для задачі оптимального керування матричним диференціальним рівнянням.
автореферат, добавлен 09.11.2013Розкриття методу Фур’є для різних типів гіперболічних рівнянь: неоднорідних, вільних коливань струни. Загальна перша крайова задача. Крайові задачі зі стаціонарними неоднорідностями. Задачі без початкових умов. Загальна схема методу поділу змінних.
курсовая работа, добавлен 21.04.2012Розв’язки операторних рівнянь, що містять оператори узагальненого зсуву, композиції, узагальненого диференціювання і узагальненого інтегрування. Зображення лінійних неперервних операторів, що переставні, які пов’язані зсувами і діють в довільних областях.
автореферат, добавлен 29.01.2016Асимптотика базисних функцій узагальненого ряду Тейлора. Зв’язок між поведінкою коефіцієнтів узагальненого ряду Тейлора та його суми. Одержання достатніх умов існування і єдиності розв’язків з компактним носієм функціонально-диференціальних рівнянь.
автореферат, добавлен 28.08.2014Доведення однозначної розв’язності задач про визначення пари функцій. Пошук похідної дробового порядку. Обернені крайові задачі для дифузійно-хвильового рівняння з узагальненими функціями в правих частинах. Векторна функція скалярного аргументу.
статья, добавлен 25.03.2016Особливості навчальної програми вивчення рівнянь та нерівностей в школі, методика їх розв'язування. Розв'язування типових вправ з використанням теореми Вієта. Вивчення формули коренів квадратного рівняння. Математичний розрахунок дискримінанти та кореня.
разработка урока, добавлен 09.10.2018Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014Опис підпростору розв’язків задачі Коші для неявного, виродженого рівняння вищого порядку, знаходження ознак коректності. Оцінка початкового моменту апроксимації розв’язків неявного рівняння вищого порядку лінійними комбінаціями елементарних розв’язків.
автореферат, добавлен 28.08.2014Розгляд питання про побудову головного члена двофазового асимптотичного солітоноподібного розв'язку задачі Коші для сингулярно збуреного рівняння Кортевега-де Фріза зі змінними коефіцієнтами у загальному випадку. Опис множини початкових значень.
статья, добавлен 04.02.2017Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.
статья, добавлен 29.07.2016Загальні відомості про алгебраїчні рівняння вищих порядків. Загальні відомості про алгебраїчні рівняння вищих порядків. Застосування теореми Безу та схеми Горнера при розв’язанні алгебраїчних рівнянь. Використання методу невизначених коефіцієнтів при вирі
курсовая работа, добавлен 30.11.2015Побудова точного аналітичного розв'язку алгоритмічного характеру гіперболічної крайової задачі математичної фізики в обмеженому кусково-однорідному просторовому середовищі. Використання методу головних зв'язків (функцій впливу та функції Гріна).
статья, добавлен 04.02.2017Системи рівнянь, основні граничні та початкові умови що описують малі потенціальні рухи рідини поблизу рівноважного стану в лінійному наближенні. Методи оптимально-диференціального формулювання еволюційної задачі. Узагальнений розв`язок задачі Коші.
статья, добавлен 30.10.2016Обґрунтування вимог до критичного та некритичного випадків побудови розв’язків звичайних диференціальних рівнянь. Моделювання алгебраїчної системи лінійних неоднорідних відповідей для крайових задач. Доведення теореми лінійно незалежних розв’язків.
реферат, добавлен 28.10.2016