Вероятность появления хотя бы одного события
Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.
Подобные документы
Определение содержания и сущности вероятности события, как численной меры степени объективной возможности этого события. Рассмотрение и анализ главных свойств вероятности. Исследование и характеристика основных теорем нахождения вероятности событий.
доклад, добавлен 17.12.2015Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.
курс лекций, добавлен 21.12.2011Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.
контрольная работа, добавлен 04.01.2015Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016История развития теории вероятности. Понятия события, его главные свойства и порядок обозначения. Характеристика основных типов: невозможное и достоверное. Задачи, решаемые формулой Байеса, ее необходимые условия. Расчет полной вероятности события.
реферат, добавлен 21.05.2013Положения и теоремы теории вероятности в теории надежности. Теоремы сложения и умножения вероятностей. Теорема гипотез и формула Бейеса. Обработка статистических данных про надежность элементов. Критерий согласия при оценке статистических гипотез.
контрольная работа, добавлен 03.11.2012Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Расчет вероятности своевременного прибытия автобусов. Применение теорем умножения вероятностей независимых событий и сложения вероятностей несовместимых событий. Применение формулы полной вероятности при определении вероятности дефекта укупорки банки.
контрольная работа, добавлен 26.05.2015Проведение расчетов вероятностей сложных событий с использованием формулы классического определения вероятности. Применение формулы полной вероятности и формулы Бейеса. Нахождение в задаче числа исходов, благоприятствующих интересующему событию.
лабораторная работа, добавлен 06.10.2020Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.
контрольная работа, добавлен 20.01.2013Рассмотрение расшифровки урновой схемы. Особенности определения геометрической вероятности. Исследование принципов применения формулы Бернулли в теории вероятности. Характеристика предельных значений вероятностей событий, интегральной теоремы Лапласа.
контрольная работа, добавлен 26.05.2015Общее понятие условной вероятности. Доказательство теоремы: вероятность произведения двух событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, вычисленную при условии, что первое событие имело место.
презентация, добавлен 01.11.2013Полная группа несовместных гипотез. Вероятности этих гипотез до опыта. Условные вероятности каждой из них. Теорема об умножении. Формула Байеса. Вероятность вытащить на экзамене шпаргалку незаметно для преподавателя. Статистика запросов кредитов в банке.
презентация, добавлен 01.11.2013Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.
шпаргалка, добавлен 09.09.2011Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.
задача, добавлен 24.02.2014Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017Нахождение вероятности выбора белых шаров из определенного количества черных. Вычисление вероятности выхода из строя элементов, заданных по условию, вероятность противоположного события. Построение графика вероятностей, использование формулы Бернулли.
контрольная работа, добавлен 24.09.2016Нахождение вероятности случайного события. Формула Пуассона. Функция и график распределения случайной величины. Классическая формула вероятности и формула числа сочетаний. Расчет дисперсии и математического ожидания по плотности вероятности величины.
контрольная работа, добавлен 14.05.2012Полная группа равновероятных и несовместных событий. Условные вероятности события. Интегральная теорема Лапласа. Сущность закона распределения дискретной случайной величины. Выборочное уравнение прямой регрессии. Гистограмма относительных частот.
контрольная работа, добавлен 28.03.2014Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.
краткое изложение, добавлен 21.03.2018Изложение методов решения задач на нахождение условной вероятности: вероятность суммы двух несовместимых событий; вероятность совместного появления двух зависимых событий, равная произведению вероятности одного из них на условную вероятность второго.
задача, добавлен 07.06.2014Расчет задач по теории вероятности с разными условиями наступления тех или иных событий по формуле Бернулли. Исчисление вероятности наступления конкретного события. Исчисление вероятности конкретной последовательности наступления определенных событий.
контрольная работа, добавлен 23.01.2014Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016