Вероятность появления хотя бы одного события

Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.

Подобные документы

  • Вероятность случайного события и элементы комбинаторики. Основные теоремы теории вероятностей. Многомерная случайная величина и закон ее распределения. Точечные оценки параметров генеральной совокупности. Гипотеза о равенстве математических ожиданий.

    презентация, добавлен 05.10.2014

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.

    реферат, добавлен 19.07.2010

  • Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.

    методичка, добавлен 16.05.2016

  • Главная особенность исследования теоремы Бернулли. Построение графика распределения вероятностей. Основной анализ определения полиномиальной схемы. Характеристика гипергеометрических испытаний. Изучение интегральной приближенной формулы Муавра-Лапласа.

    презентация, добавлен 25.09.2017

  • Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.

    учебное пособие, добавлен 15.06.2015

  • Сумма и произведение событий. Закон распределения случайных величин и их числовые характеристики, формула полной вероятности и теорема гипотез. Плотность и свойства функции распределения. Закон распределения Пуасона и теорема о числовых характеристиках.

    шпаргалка, добавлен 14.11.2010

  • Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.

    задача, добавлен 05.05.2015

  • Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.

    реферат, добавлен 27.02.2012

  • Понятие теории вероятности, её формулы и правила. Применение теории вероятности в различных сферах жизнедеятельности человека. Определение вероятности получения положительной оценки при сдаче экзамена по математике путем угадывания правильного ответа.

    доклад, добавлен 15.11.2020

  • Независимость событий и случайность отбора. Использование формулы Пуассона и формулы Бернулли. Закон распределения и числовые характеристики. Соотношение доверительной вероятности и коэффициента доверия. Несмещенные оценки математического ожидания.

    контрольная работа, добавлен 23.04.2013

  • Процесс определения одних понятий через другие. Понятие случайного и достоверного события. Невозможное событие как противоположность достоверного. Установление единицы измерения вероятности. Принцип практической уверенности, подсчет вероятностей.

    реферат, добавлен 30.10.2010

  • Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.

    учебное пособие, добавлен 24.11.2014

  • Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.

    задача, добавлен 20.11.2015

  • Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.

    реферат, добавлен 10.11.2014

  • Изучение особенностей непосредственного подсчета вероятностей. Определение сущности статистической и геометрической вероятности. Характеристика центральной предельной теоремы. Исследование распределения случайных величин. Анализ теоремы Линдеберга.

    контрольная работа, добавлен 30.03.2015

  • Понятие противоположного события в теории вероятностей. Сумма двух событий А и В равняется событию С, которое состоит из наступления события А или В, или событий А и В вместе. Произведение двух событий А и В, состоящее в одновременном их наступлении.

    презентация, добавлен 01.11.2013

  • Вероятность - базовое понятие теории вероятностей – математической науки, предметом исследований которой является изучение свойств вероятностей событий, удовлетворяющих некоторым простым соотношениям. Размышления о случайном. Задача о разделе ставки.

    реферат, добавлен 19.08.2015

  • Определение вероятности суммы совместных событий. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон (распределение Гаусса). Функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    презентация, добавлен 10.08.2015

  • Элементарная теория вероятностей. Условная вероятность и независимость событий. Случайные величины и функции распределения. Предельные теоремы в схеме испытаний Бернулли. Проблема статистического вывода, методы оценки параметров. Доверительные интервалы.

    курс лекций, добавлен 15.09.2011

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.

    учебное пособие, добавлен 29.01.2014

  • Вероятность случайного события - положительное число, заключенное между нулем и единицей. Пространство элементарных событий – множество исходов испытания, которые могут появиться при его проведении. Характеристика основных аксиом теории вероятности.

    курсовая работа, добавлен 21.03.2022

  • Среднеквадратичное отклонение как совокупность наибольшего сгущения значений случайной величины. Частота как число случаев появления возможного события при определенных условиях. Классическое определение вероятности наступления случайного события.

    контрольная работа, добавлен 07.11.2017

  • История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.

    реферат, добавлен 08.06.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.