Топологические пространства
Определение топологического пространства. Основные этапы развития топологии. Классическое определение непрерывности числовой функции в точке, восходящее к Коши. Задачи и виды топологии. Суть аксиомы Колмогорова. Отображения топологических пространств.
Подобные документы
Обоснование необходимости ввода в процессе решения математической проблемы континуума в числовую математику принципа непрерывности, определенного в философии. Анализ варианта решения проблемы автором только в категории потенциальной бесконечности.
статья, добавлен 27.08.2013Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
учебное пособие, добавлен 18.06.2015Определение вероятности того, что будут сданы два первых экзамена. Вычисление значения функции распределения. Построение многоугольника распределения. Нахождение математического ожидания, дисперсии и среднего квадратического отклонения случайной величины.
контрольная работа, добавлен 26.05.2015Задачи, приводящие к понятию производной. Исследование уравнения неравномерного прямолинейного движения, определенного на заданном множестве. Определение тангенса угла наклона касательной к графику функции в точке с абсциссой, расчет производной.
лекция, добавлен 11.12.2014Исследование и характеристика процесса становления теоретико-числового метода в приближенном анализе, как раздела теории чисел. Ознакомление с деятельностью Добровольского - представителя Тульской теоретико-числовой школы. Определение индекса Хирша.
статья, добавлен 22.01.2017Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.
лекция, добавлен 08.11.2015- 107. Высшая математика
Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.
контрольная работа, добавлен 29.11.2016 Сущность задачи на нахождение геометрического места точек пространства. Серединная плоскость скрещивающихся прямых. Гиперболический параболоид как поверхность второго порядка. Окружность и сфера Аполлония. Метод в стереометрических задачах на построение.
реферат, добавлен 24.12.2013Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.
статья, добавлен 30.03.2017Понятие конформных отображений, их осуществление через элементарные функции. Основные принципы теории конформных отображений об отображении одной заданной области на другую. Принципы непрерывности и симметрии. Конформность дифференцируемого отображения.
курсовая работа, добавлен 11.10.2011Понятие числовых рядов и их свойства. Ряды с неотрицательными членами. Признаки Даламбера и Коши. Знакопеременные ряды. Свойства абсолютно сходящихся рядов. Функциональные последовательности, их графики. Функциональные и степенные ряды, их сходимость.
лекция, добавлен 10.12.2011Рассмотрение пространства функционалов для аппроксимации нелинейной системы кусочно-линейным способом, ортогональными и степенными полиномами. Определение ядер дискретного функционального полинома. Изучение математической постановки задачи интерполяции.
реферат, добавлен 22.02.2012Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.
контрольная работа, добавлен 16.12.2013- 115. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
статья, добавлен 29.04.2018 Вещественная функция, гармоническая в круге. Первоначальное изучение граничного поведения. Формула Коши-Грина, обобщение в случае единичного круга. Интегральное представление гармонических функций. Бесконечные числовые произведения чисел, их сходимость.
курс лекций, добавлен 24.09.2017- 117. Высшая математика
Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.
курс лекций, добавлен 18.02.2012 Рассмотрение содержания арифметической теории квадратичных форм. Изучение основ теории билинейных и квадратичных форм. Линейные операции над векторами евклидова пространства. Неравенство Коши-Буняковского. Основные свойства квадратической формы.
реферат, добавлен 31.12.2020Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Особенность применения конформных преобразований и интеграла типа Коши. Выполнение условий непрерывности тангенциальной составляющей вектора напряженности магнитного поля. Постановка и решение краевой задачи для комплексно-сопряженной магнитной индукции.
статья, добавлен 06.11.2018Нахождение пределов функций, левого и правого пределов в точке, скачка функции в каждой точке разрыва, точки разрыва функции, если они существуют, значения функции при стремлении аргумента к каждому из данных значений. Построение схематического чертежа.
контрольная работа, добавлен 26.11.2016Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.
лабораторная работа, добавлен 06.10.2022Дифференцируемость и полный дифференциал в точке. Главная линейная часть и её приращение. Геометрический смысл дифференциала функции нескольких переменных. Производные сложной и неявной функции. Производная в данном направлении и градиент функции.
лекция, добавлен 07.07.2015Определение и примеры мощности множеств. Определение бинарного отношения. Описание способов задания отношений. Характеристика свойств бинарных отношений. Изучение отношений эквивалентности и частичного порядка. Анализ свойств отображения функций.
лекция, добавлен 25.12.2016Решение уравнений с использованием однотипных интервалов. Характеристика и определение вектор-функции пространства. Разбивка неособых частных неравенств на непересекающиеся классы. Построение множества, вычисление дискриминанта квадратного неравенства.
лекция, добавлен 01.09.2017