О развертках куба

Исследование возможных разверток куба, порядок представления каждой из них в виде графов. Способы разреза куба для получения одиннадцати известных разверток. Отличительные особенности и свойства симметричных и ассиметричных разверток, их внешний вид.

Подобные документы

  • Рассмотрение основных понятий теории множеств. Сущность элементарных тождеств, их функции и признаки. Главные свойства операций над отношениями: эквивалентности, толерантности, частичности порядка. Характеристика теории графов: эйлеровы, гамильтоновы.

    учебное пособие, добавлен 28.12.2013

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.

    презентация, добавлен 21.09.2017

  • История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.

    лекция, добавлен 11.02.2010

  • Семантические сети как аппарат представления, история их разработок и эволюции. Алгебраические свойства отношений, порожденные атрибутами событий. Типы отношений по их алгебраическим свойствам, их отличительные характеристики и оценка результатов.

    статья, добавлен 16.01.2018

  • Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.

    шпаргалка, добавлен 27.10.2013

  • Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.

    презентация, добавлен 26.07.2015

  • Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.

    контрольная работа, добавлен 07.11.2013

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.

    презентация, добавлен 18.03.2016

  • Формализованные методы описания и исследования систем. Понятия и определения графов, способы их задания и типы. Применение графов для исследования систем, построение и преобразования их структуры. Случайные события и величины, их основные характеристики.

    курсовая работа, добавлен 21.01.2016

  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка, добавлен 03.10.2017

  • Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.

    контрольная работа, добавлен 18.12.2015

  • Знакомство с понятием "граф" и его основными элементами. Составление графов по словесному описанию отношений между предметами и существами. Решение задач при помощи графов. Применение теории графов в анализе художественного текста и стилистике переводов.

    презентация, добавлен 15.10.2016

  • История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.

    курсовая работа, добавлен 29.01.2010

  • Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.

    курс лекций, добавлен 01.04.2016

  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция, добавлен 29.09.2013

  • Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.

    курсовая работа, добавлен 03.12.2013

  • Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.

    реферат, добавлен 18.03.2010

  • Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.

    методичка, добавлен 24.03.2015

  • Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.

    курсовая работа, добавлен 26.11.2014

  • Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.

    реферат, добавлен 14.12.2015

  • Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.

    статья, добавлен 20.04.2019

  • Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.

    курсовая работа, добавлен 30.03.2015

  • Обзор методов решения задачи нахождения собственных значений симметричных матриц большой размерности. было проведено исследование с применением разработанного на языке C++ приложения, а также сделаны выводы о работе алгоритмов. Результаты экспериментов.

    дипломная работа, добавлен 24.09.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.