Применение Microsoft Excel для вычисления линейной регрессии с двумя переменными и множественной регрессии
Методика построения точечной диаграммы и линии регрессии в программном приложении Microsoft Excel. Определение стандартного отклонения выборки и коэффициента корреляции. Порядок выполнения проверки соответствия остатков нормальному распределению.
Подобные документы
Методы расчета линейного коэффициента парной корреляции. Оценка статистической значимости коэффициентов множественного уравнения регрессии с помощью критерия Стьюдента. Проверка системы эконометрических уравнений на необходимое условие идентификации.
контрольная работа, добавлен 12.12.2015Прогнозы с применением метода скользящего среднего. Составление прогнозов скользящего среднего с использованием диаграмм и надстройки "Пакет анализа" в Microsoft Excel. Прогнозирование с помощью функций регрессии. Регрессивный анализ с помощью диаграмм.
лабораторная работа, добавлен 03.07.2013- 53. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Вычисление параметров уравнения линейной регрессии; экономическая интерпретация коэффициента регрессии. Проверка значимости параметров регрессии с помощью t-критерия Стьюдента. Запись системы одновременных уравнений и проверка их на идентифицируемость.
контрольная работа, добавлен 29.10.2012Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Параметры уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Прогнозирование среднего значения показателя. Графически фактические и модельные значения Y точки прогноза. График остаточной компоненты. Дисперсия остатков.
задача, добавлен 05.12.2014Расчет линейного коэффициента парной корреляции и оценка тесноты связи. Особенность статистической значимости параметров регрессии и корреляционной системы. Подсчет ошибки прогноза и его доверительного интервала. Вычисление коэффициента детерминации.
контрольная работа, добавлен 28.08.2017Расчет линейного коэффициента парной корреляции и его статистической значимости. Вычисление качества уравнения регрессии при помощи коэффициента детерминации. Оценка статистической надежности результатов регрессионного моделирования критерием Фишера.
контрольная работа, добавлен 26.03.2014Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.
лабораторная работа, добавлен 18.09.2012Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.
контрольная работа, добавлен 01.03.2017Определение зависимости среднедушевого потребления продукта от размера дохода и индекса цен. Построение матрицы парных коэффициентов корреляции. Оценка уравнения регрессии с помощью критериев Фишера и Стьюдента. Прогнозирование эластичности спроса.
контрольная работа, добавлен 01.11.2015Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.
презентация, добавлен 02.10.2011Оценка практической значимости уравнения множественной регрессии с помощью показателя множественной корреляции и его квадрата – показателя детерминации. Теснота совместного влияния факторов на результат. Включение факторов в регрессионную модель.
реферат, добавлен 25.04.2015Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.
учебное пособие, добавлен 13.01.2016Расчет линейных коэффициентов парной корреляции и детерминации. Оценка статистической значимости параметров регрессии и коэффициента корреляции с уровнем значимости 0,05. Прогноз значения признака-результата при прогнозируемом значении признака-фактора.
контрольная работа, добавлен 25.03.2016Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.
курсовая работа, добавлен 14.12.2015Расчет линейного коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации. Оценка статистической значимости уравнения регрессии и отдельных ее параметров и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.
контрольная работа, добавлен 13.04.2022Классификация и информационная база эконометрических моделей. Сущность однофакторной линейной регрессии. Подбор параметров прямой регрессии по методу наименьших квадратов. Нулевая и конкурирующая гипотезы. Проверка линейной регрессии на адекватность.
учебное пособие, добавлен 14.04.2015Решение задачи с помощью пакета Excel. Параметры уравнения линейной зависимости. Таблица дисперсионного анализа, коэффициенты детерминации. Средняя ошибка аппроксимации. Оценка значимости коэффициента корреляции и регрессии с помощью критерия Стьюдента.
контрольная работа, добавлен 11.10.2012Формулировка и доказательство теоремы Гаусса-Маркова. Анализ точности определения оценок коэффициентов регрессии. Понятие коэффициента детерминации. Построение доверительных интервалов по линейному уравнению регрессии и расчёт коэффициента вариации.
контрольная работа, добавлен 28.07.2013Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
контрольная работа, добавлен 16.07.2019Статистические и математические функции Excel: модели линейной регрессии с двумя коэффициентами, полиномиальная регрессия. Построение экспоненциальной линии тренда путем расчета точек методом наименьших квадратов. Дисконтированный период окупаемости.
контрольная работа, добавлен 10.11.2012Уравнение парной регрессии, её параметры: коэффициенты корреляции и эластичности, их значимость и доверительный интервал, ошибка аппроксимации, коэффициент детерминации. Матрица парных коэффициентов корреляции. Анализ параметров уравнения регрессии.
контрольная работа, добавлен 07.07.2015Оценка существенности параметров уравнения множественной регрессии и корреляции. Классификация систем эконометрических уравнений. Создание экономической модели значений котировок доллара по отношению к рублю с целью повышения прибыльности предприятий.
контрольная работа, добавлен 23.11.2016Оценка и анализ влияния факторов на зависимую переменную по построенным моделям однофакторной и двухфакторной регрессий с помощью коэффициентов детерминации, эластичности и множественной корреляции. Установление степени линейной связи между переменными.
контрольная работа, добавлен 09.05.2013