Применение Microsoft Excel для вычисления линейной регрессии с двумя переменными и множественной регрессии

Методика построения точечной диаграммы и линии регрессии в программном приложении Microsoft Excel. Определение стандартного отклонения выборки и коэффициента корреляции. Порядок выполнения проверки соответствия остатков нормальному распределению.

Подобные документы

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Основная цель множественной регрессии, используемой в решении проблем спроса, изучении доходности акций и функции издержек производства. Условия включения факторов при построении множественной регрессии. Механизм действия их мультиколлинеарности.

    презентация, добавлен 05.10.2015

  • Зависимость индекса человеческого развития от валового накопления и суточной калорийности питания населения. Расчет парных коэффициентов корреляции с помощью средних квадратических отклонений и показателей. Построение однофакторных уравнений регрессии.

    контрольная работа, добавлен 13.01.2018

  • Параметры линейной, степенной, показательной функций и равносторонней гиперболы. Оценка каждой модели через среднюю ошибку аппроксимации и F-критерий Фишера. Линейный коэффициент парной корреляции и средняя ошибка аппроксимации, параметры регрессии.

    контрольная работа, добавлен 05.10.2011

  • Определение и характеристика сущности парной регрессии и корреляции. Изучение примеров гетероскедастичности. Ознакомление с традиционном методом наименьших квадратов для многомерной регрессии. Рассмотрение критических значений критерия Стьюдента.

    курсовая работа, добавлен 26.09.2017

  • Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.

    контрольная работа, добавлен 10.07.2016

  • Основные типы эконометрических моделей и исходные данные для их построения. Оценка статистической значимости параметров линейной модели множественной и парной регрессии. Применение эконометрических моделей для прогнозирования, примеры их построения.

    учебное пособие, добавлен 07.05.2015

  • Анализ статистических данных, описывающих зависимость уровня рентабельности на предприятии от скорости товарооборота. Построение на их основе уравнения парной регрессии с помощью программы Excel. Определение значимости оценок с заданной надежностью.

    контрольная работа, добавлен 30.04.2014

  • Построение поля корреляции. Выборочные среднеквадратические отклонения. Оценка качества полученной модели. Нахождение среднего коэффициента эластичности. Оценка статистической значимости параметров линейной регрессии. Интервальная оценка коэффициентов.

    контрольная работа, добавлен 24.01.2014

  • Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.

    контрольная работа, добавлен 07.10.2015

  • Примеры расчета параметров экономической модели. Анализ уравнений линейной, гиперболической парной регрессии. Оценка тесноты связи и значимости коэффициентов регрессий, определение статистической надежности результатов регрессионного моделирования.

    контрольная работа, добавлен 22.11.2010

  • Построение диаграммы рассеивания, определение коэффициента корреляции среднедушевых денежных доходов и расходов населения регионов РФ. Определение параметров линейной регрессионной модели. Проверка адекватности модели и интерпретация уравнения регрессии.

    контрольная работа, добавлен 01.11.2013

  • Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.

    задача, добавлен 20.06.2016

  • Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.

    контрольная работа, добавлен 08.02.2022

  • Точечные и интервальные оценки случайной величины. Методика проверки статистических гипотез. Определение коэффициента корреляции, решение уравнения парной регрессии. Построение и анализ регрессионной модели. Моделирование одномерных временных рядов.

    методичка, добавлен 01.09.2012

  • Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.

    контрольная работа, добавлен 05.02.2016

  • Построение поля корреляции, характеризующего зависимость валового регионального продукта на душу населения от размера инвестиций в основной капитал. Описание зависимостей продукции сельского хозяйства от различных факторов с помощью уравнения регрессии.

    контрольная работа, добавлен 10.09.2012

  • Осуществление проверки значимости уравнения регрессии на основе критерия Фишера. Изучение множественного коэффициента корреляции и детерминации. Распределение регионов по уровню занятости населения. Расчет дисперсии и среднего квадратического отклонения.

    задача, добавлен 27.12.2017

  • Характеристика основных показателей качества параметров регрессии. Порядок работы при проверке значимости коэффициента. Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Аспекты предсказания среднего значения зависимой переменной.

    курс лекций, добавлен 11.06.2014

  • Определение корреляционной зависимости между величинами. Характеристика значимости нелинейной корреляции для множественного уравнения парной регрессии. Оценка качества модели функции регрессии и её параметров. Изучение методов наименьших квадратов.

    курсовая работа, добавлен 26.04.2013

  • Применение линейного регрессионного анализа для ситуаций с одной зависимой и одной независимой переменной. Проверка соблюдения необходимых условий для применения анализа линейной однофакторной регрессии. Построение точек на графике прямой регрессии.

    презентация, добавлен 01.11.2013

  • Построение диаграммы рассеяния линейной парной регрессии. Проверка наличия тренда в заданных значениях прибыли фирмы. Расчет выборочного коэффициента корреляции. Оценка дисперсии случайной составляющей эконометрической модели. Прогноз величины прибыли.

    контрольная работа, добавлен 05.12.2016

  • Линейные, нелинейные парные функции регрессии. Оценка тесноты связи дохода от железнодорожных перевозок и пассажирооборота с помощью показателей корреляции, детерминации, среднего коэффициента эластичности. Оценка ошибки аппроксимации уравнений регрессии.

    курсовая работа, добавлен 29.10.2015

  • Определение факторных и результативных признаков. Изучение взаимосвязи энерговооруженности и выпуска готовой продукции. Обзор уравнения регрессии и вычисление коэффициента регрессии. Определение формы связи и измерение тесноты связи, оценка адекватности.

    контрольная работа, добавлен 06.02.2018

  • Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии, дисперсии и среднеквадратического отклонения. Разработка матрицы парных коэффициентов.

    задача, добавлен 13.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.