Базисы в топологических векторных пространствах

Линейные (векторные) пространства. Пространства числовых последовательностей. Топологические векторные пространства, обладающие базисным свойством. Существование базиса в топологическом векторном пространстве. Единственность базиса, метод декомпозиции.

Подобные документы

  • Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.

    контрольная работа, добавлен 11.03.2011

  • Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.

    книга, добавлен 19.05.2011

  • Эвристическое правило выбора функционального базиса в задаче построения функции регрессии. Выбор из множества возможных базисов такого, который доставляет минимум остаточной сумме квадратов, рассчитанной по проверочной выборке. Примеры эффективности.

    статья, добавлен 27.11.2018

  • Доказательство изооморфности векторных пространств. Отображение для всевозможных наборов чисел. Линейные, нулевые и тождественные преобразования. Однозначное соответствие между матрицами и всеми линейными преобразованиями векторного пространства.

    лекция, добавлен 30.04.2014

  • Множества в векторных пространствах. Продолжение положительных функционалов и операторов. Равномерность и топология метрического пространства. Теорема Жордана и простые картины. Выпуклые функции и сублинейные функционалы, алгебра ограниченных операторов.

    монография, добавлен 18.06.2015

  • Исследование функции многих переменных. Понятие множества, расстояние в нём. Характеристика метрического пространства. Сфера как множество точек евклидова пространства, находящихся от некоторой точки на постоянном расстоянии. Бесконечномерная сфера.

    контрольная работа, добавлен 25.10.2010

  • Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.

    курс лекций, добавлен 01.09.2017

  • Скалярные и векторные величины, линейные операции над ними в координатной форме, координатный базис, правило паралеллограма. Скалярное произведение векторов, их разложение по ортам в пространстве. Сонаправленные и противоположные колинеарные вектора.

    методичка, добавлен 01.02.2013

  • Решение задачи, состоящей в определении максимального значения функции. Решение расширенной задачи симплекс-методом. Алгоритм метода искусственного базиса. Особые случаи применения симплекс-метода (Х.А. Таха). Правило выявления неограниченности решения.

    лекция, добавлен 06.09.2017

  • Изучение структуры пространств модулярных форм, содержащих мультипликативные эта-произведения с единичным характером. Нахождение размерности и базиса пространств модулярных форм по формуле Коэна-Остерле, поведение функций в параболических вершинах.

    статья, добавлен 31.05.2013

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Рассмотрены пространственные структуры на примере математики и в приложениях к модальной логике пространства. многозначность понятия "пространства". На примере анализа структуры топологического пространства вводится понятие близости между частями целого.

    статья, добавлен 27.04.2023

  • Определение аффинных преобразований пространства, их основные свойства. Основные доказательства теорем про аффинные преобразования. Характеристика родства пространства: его определение, свойства (корректность определения направления родства и пр.).

    реферат, добавлен 23.11.2016

  • Разработка метода построения некоторых геометрических образов в гиперкомплексном квадриплексном пространстве. Формулирование геометрической интерпретации квадриплексного пространства с помощью изоморфизма квадриплексных и бикомплексных пространств.

    статья, добавлен 29.01.2019

  • Сущность задачи на нахождение геометрического места точек пространства. Серединная плоскость скрещивающихся прямых. Гиперболический параболоид как поверхность второго порядка. Окружность и сфера Аполлония. Метод в стереометрических задачах на построение.

    реферат, добавлен 24.12.2013

  • Определение предела функции по Коши, понятие непрерывности в точке. Множества Коши в Евклидовом пространстве. Решение неравенства Коши для бесконечных последовательностей. Неравенства треугольника. Комплексные пространства со скалярным произведением.

    курсовая работа, добавлен 09.12.2010

  • Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.

    курс лекций, добавлен 21.11.2011

  • История возникновения понятия вероятности и ее классическое определение. Построение вероятностного пространства и теорема о продолжении меры. Определение и свойства вероятностного пространства и вероятностной меры. Аксиомы существования вероятности.

    курсовая работа, добавлен 08.10.2009

  • Определители матриц. Векторное произведение векторов, его свойства. Линейные преобразования пространства. Прямая в пространстве. Виды уравнений прямой. Гипербола и парабола. Конусы и цилиндры. Непрерывные функции и их свойства. Производная и дифференциал.

    шпаргалка, добавлен 11.05.2010

  • Определение образа и ядра оператора в векторном пространстве. Доказательство того, что образ и ядро являются подпространствами векторного пространства. Связь между размерностями образа и ядра. Алгоритмы нахождения базисов образа и ядра. Алгоритм Чуркина.

    лекция, добавлен 30.03.2017

  • Использование принципа линейной нормальной классификации объектов в многомерных пространствах признаков для построения классификаторов в случае множеств сложной структуры. Построение алгоритма проверки включения заданной точки пространства в множество.

    статья, добавлен 30.05.2017

  • Структурные элементы ячейки 2D пространства. Вероятные структурные состояния с учетом кристаллической и фрактальной компонент. Основные классы вероятных фрактал содержащих структур ячеистого 2D пространства. Элементарные ячейки модулярных структур.

    статья, добавлен 21.06.2018

  • Исследование основных векторных соотношений, особенности их использования в решении математических задач. Структура системы, полученной в силу единственности разложения вектора. Доказательство причисления равенства к основным векторным соотношениям.

    реферат, добавлен 18.06.2015

  • Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.

    курсовая работа, добавлен 07.07.2012

  • Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.

    лекция, добавлен 08.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.