Базисы в топологических векторных пространствах
Линейные (векторные) пространства. Пространства числовых последовательностей. Топологические векторные пространства, обладающие базисным свойством. Существование базиса в топологическом векторном пространстве. Единственность базиса, метод декомпозиции.
Подобные документы
Изучение применения метода орбит в теории интерполяции операторов, а также в некоторых вопросах системного анализа. Оптимальное интерполяционное пространство для весовых банаховых пар. Применение метода орбит к доказательству существования базиса.
курс лекций, добавлен 28.07.2015Рассмотрение содержания арифметической теории квадратичных форм. Изучение основ теории билинейных и квадратичных форм. Линейные операции над векторами евклидова пространства. Неравенство Коши-Буняковского. Основные свойства квадратической формы.
реферат, добавлен 31.12.2020Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.
курс лекций, добавлен 20.09.2011Симплекс, его грани, ребра и вершины. Свойства векторов, задаваемых ребрами прямоугольного симплекса в двухмерном, трехмерном и четырехмерном евклидовом пространстве. Понятие n-мерного евклидового пространства. Решение пространственных задач по теме.
курсовая работа, добавлен 22.04.2011Характеристика векторных величин. Понятие единичного вектора. Линейные операции с векторами и действия над векторами в координатной форме. Деление отрезка в заданном отношении. Координаты вектора в прямоугольной системе. Условие коллинеарности векторов.
презентация, добавлен 28.09.2017Свойства рабочего пространства и манипуляционного робота. Математическая модель двухзвенного манипуляционного робота. Проблемы прямого планирования, обзор алгоритма и выборка движения. Предположения для упрощения, обозначения для объектов в пространстве.
курсовая работа, добавлен 26.12.2019Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.
шпаргалка, добавлен 25.03.2011Получение точных неравенств типа Джексона на классах дифференцируемых функций двух переменных. Исследование оператора обобщенного сдвига в метрике пространства L2,p(R2) с весом Чебышева-Эрмита. Ортонормированная система алгебраических полиномов Эрмита.
статья, добавлен 30.10.2016Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.
курсовая работа, добавлен 21.09.2017- 85. Метод проекций
Получение изображения объектов пространства на плоскости методом проецирования. Центральное проецирование как общий случай проецирования геометрических объектов на плоскость. Проецирование на три плоскости проекций. Проекции точки, прямой и плоскости.
лекция, добавлен 02.04.2019 Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
презентация, добавлен 13.04.2012Подобие второго рода. Осевая симметрия. Следствия векторных формул. Алгебра преобразований и векторных формул, примеры решения основных задач с их использованием. Исследование векторных выражений. Вывод формул разложения на элементарные преобразования.
статья, добавлен 04.05.2012Использование графических изображений статистических данных. Рассмотрение понятия векторного пространства. Задача линейного программирования и этапы ее решения графическим методом. Пример решения задачи линейного программирования графическим методом.
курсовая работа, добавлен 12.04.2015Вычисление определителей, матрицы и их свойства. Решение систем линейных уравнений и типовых примеров задания 1 РГР. Векторные и скалярные величины. Разложение вектора по координатным осям. Длина и направление отрезка. Прямая линия на плоскости.
методичка, добавлен 22.09.2017Рассмотрение почти контактных метрических многообразий с нулевым тензором Схоутена. Определение дифференцирования допустимых тензорных полей. Использование адаптированных координат. Векторные поля линейно независимые в области определения нужной карты.
статья, добавлен 02.03.2018Переход от модели вход-выход к модели вход-состояние-выход. Переход от модели вход-состояние-выход к модели вход-выход. Математическая модель канонической управляемой формы. Нахождение матрицы преобразования. Замена базиса в пространстве состояний.
лабораторная работа, добавлен 02.03.2015Операции алгебры логики. Закон двойственности для булевых функций (правило де Моргана). Преобразование выражения за счет так называемой операции склеивания. Алгоритм минимизации. Метод карт Карно. Представление кодирования булева пространства кодом Грея.
контрольная работа, добавлен 22.10.2013Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.
лекция, добавлен 17.01.2014Топологические свойства дополнений к конфигурациям комплексных гиперплоскостей. Гомеоморфные дополнения до конфигураций подпространств вещественной коразмерности 2 в аффинных пространствах. Фундаментальная группа дополнения до конфигурации прямых в R3.
курсовая работа, добавлен 23.07.2016Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.
учебное пособие, добавлен 06.02.2011Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.
реферат, добавлен 06.03.2023Частичные полукольца непрерывных функций на топологических пространствах X со значениями в полукольце [0, ∞] рассматриваемом с обычной топологией. Максимальные идеалы и основополагающие свойства простых идеалов. Применение соответствий полуколец.
статья, добавлен 26.04.2019- 98. Метод сеток как способ решения дифференциальных уравнений модели процесса получения жидкого железа
Решение системы дифференциальных уравнений, описывающей процесс получения жидкого железа прямого восстановления в электродуговой сталеплавильной печи. Энергетические и химические процессы в расплаве и шлаке. Строение пространства моделирования системы.
статья, добавлен 02.11.2018 Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.
реферат, добавлен 02.03.2017Раскрытие сущности алгоритма по перечислению гиперкомплексных числовых систем методом линейных преобразований. Определение понятия канонической и неканонической числовых систем. Сферы применения полученных неканонических гиперкомплексных числовых систем.
статья, добавлен 29.01.2019