Частные уравнения

Классификация и характеристики особых частных уравнений и неравенств с переменными параметрами. Анализ множества индексов вектор-функций, разбиение их на типы. Правила выполнения равносильных преобразований. Непересекающиеся классы эквивалентности.

Подобные документы

  • Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.

    методичка, добавлен 27.04.2016

  • Исследование линейного уравнения с двумя переменными. Определение понятия квадратных уравнений. Ознакомление с особенностями уравнений высших степеней сводящиеся к квадратным. Изучение процесса нахождения точек пересечения графика с осями координат.

    контрольная работа, добавлен 16.02.2023

  • Правила решения уравнений первого порядка, нахождение неизвестной производной функции (дифференциала). Геометрический смысл общего и частного решения. Уравнения с разделяющимися переменными. Простейшие случаи нахождения интегрирующегося множителя.

    курс лекций, добавлен 11.10.2014

  • Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.

    контрольная работа, добавлен 29.05.2017

  • Функционально-графические методы решения алгебраических задач с параметрами и модулем. Приемы выполнения изображения на плоскости и их использование в решении задач с параметрами и модулем. Линейные и квадратные уравнения. Графики элементарных функций.

    методичка, добавлен 26.09.2013

  • Теоретические аспекты понятия о комплексных числах, число действительных корней и основные правила их извлечения. Методы решения различных видов уравнений с несколькими переменными в радикалах и приближенное решение уравнений в элементарной алгебре.

    презентация, добавлен 11.03.2012

  • Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.

    презентация, добавлен 07.05.2014

  • Возникновение математических моделей в виде автономных систем обыкновенных дифференциальных уравнений, зависящих от параметров в задачах естествознания. Зависимость скорости изменений некоторых величин, называемых фазовыми, или динамическими переменными.

    статья, добавлен 25.12.2017

  • Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.

    статья, добавлен 26.07.2016

  • Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".

    автореферат, добавлен 12.05.2018

  • Особенности решения уравнения с двумя неизвестными. Построение графика, определение координат. Количество решений двух линейных уравнений с двумя переменными. Отличительные черты способа подстановки и метода сложения. Расчет верного числового равенства.

    презентация, добавлен 22.11.2015

  • Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.

    контрольная работа, добавлен 16.09.2015

  • Нестандартные приемы решения уравнений и неравенств, содержащих модуль, изучаемых на дополнительных занятиях и при решении олимпиадных задач. Типовые задания на решение уравнений и неравенств. Задания тестовых вариантов Единого Национального Тестирования.

    дипломная работа, добавлен 12.11.2014

  • Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.

    шпаргалка, добавлен 10.09.2009

  • Метод "частичных" областей для решения уравнений с параметрами. Показательные и логарифмические уравнения и неравенства с параметрами. Освоение методов решения вычислительных и логических задач. Поиск решения линейных и квадратных уравнений в общем виде.

    дипломная работа, добавлен 20.05.2018

  • Варианты параллельной системы вычислений при решении систем дифференциальных уравнений первого порядка с нечеткими условиями. Анализ метода, предложенного Обергуггенбергером и Пицманом в статье "Дифференциальные уравнения с нечеткими параметрами".

    статья, добавлен 27.02.2019

  • Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.

    курсовая работа, добавлен 11.04.2014

  • Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.

    реферат, добавлен 19.01.2015

  • Cистематизация и обобщение видов уравнений с параметрами и методы их решения. Случаи, когда исходное уравнение не является квадратным. Значения параметра a, для которых все корни уравнения отрицательны. Свойства логарифмов и методы замены переменной.

    курсовая работа, добавлен 30.03.2015

  • Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.

    учебное пособие, добавлен 05.03.2010

  • Средние величины, неравенство Коши. Доказательство неравенств методами "от противного" и математической индукции. Использование неравенства Коши-Буняковского при решении тригонометрических уравнений. Решение уравнений с помощью замечательных неравенств.

    курсовая работа, добавлен 23.10.2017

  • Исследование механизма решения задач С3 при помощи метода интервалов. Метод интервалов для рациональных неравенств. Метод равносильных переходов. Метод равносильных переходов. Характеристика метода сравнения основания с единицей и рационализации.

    презентация, добавлен 03.05.2017

  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа, добавлен 26.12.2012

  • Изучение свойств показательной и логарифмической функций. Развитие интереса к математике; формирование навыков самостоятельной деятельности на уроке. Реализация творческого мышления при решении показательных и логарифмических уравнений и неравенств.

    презентация, добавлен 24.10.2012

  • Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.

    презентация, добавлен 30.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.