Сопровождающий трёхгранник кривой

Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.

Подобные документы

  • Линейные дифференциальные уравнения n-ного и второго порядка. Уравнения с постоянными коэффициентами. Неоднородные уравнения второго порядка с постоянными коэффициентами. Уравнения в частных производных, содержащие несколько независимых переменных.

    курс лекций, добавлен 26.08.2015

  • Характеристика общего уравнения прямой. Описание векторного, канонического и параметрического уравнения прямой. Вычисление угла между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Уравнения прямой, проходящей через две точки.

    лекция, добавлен 09.07.2015

  • Построение области асимптотической устойчивости одного скалярного дифференциально-разностного уравнения с одним запаздыванием и периодическим кусочно-постоянным коэффициентом в плоскости параметров уравнения. Задача Коши для дифференциального уравнения.

    статья, добавлен 26.04.2019

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Характеристика методики определения угла между двумя векторами с помощью их скалярного произведения. Определение уравнения плоскости основания пирамиды, угла между гранью, образованной векторами и плоскостью основания. Решение матричного уравнения.

    методичка, добавлен 14.12.2015

  • Определение зависимости между перемещениями и деформациями, сущность уравнения Коши и его использование. Условия совместности (неразрывности) деформаций. Рассмотрение дифференциального уравнения равновесия. Расчет напряжения на наклонных площадках.

    курсовая работа, добавлен 19.09.2017

  • Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.

    контрольная работа, добавлен 22.12.2019

  • Определение и способы задания плоской кривой, их классификация и разновидности: парабола, гипербола, эллипс, трансцендентные. Свойства и характеристики кривых линий: обводы и касательные, точки и кривизна. Особенности проекций и подходы к их анализу.

    реферат, добавлен 21.08.2017

  • Актуальность применения определенного интеграла и его приложений, использование в математике, физике, механике. Решение дифференциальных уравнений практического содержания. Статический момент и координаты центра тяжести плоской кривой, плоской фигуры.

    курсовая работа, добавлен 18.03.2015

  • Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.

    контрольная работа, добавлен 12.01.2013

  • Нахождение области определения функции двух вещественных переменных. Получение уравнения изолиний функции двух вещественных переменных. Нормальный вектор касательной плоскости. Математические модели пары двойственных задач линейного программирования.

    контрольная работа, добавлен 25.06.2013

  • Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.

    реферат, добавлен 20.02.2017

  • Понятие целых и дробных уравнений. Определение многочлена стандартного вида. Понятие уравнения с одной переменной. Основные методы решения целых уравнений. Понятие и определение степени уравнения. Определение корня линейного и квадратного уравнения.

    презентация, добавлен 14.01.2015

  • Пересечение двух многогранников и общий алгоритм построения лини пересечения поверхностей. Пересечение гранной и кривой поверхности. Описание методов вспомогательных секущих плоскостей и сфер. Особенности пересечения поверхностей вращения, теорема Монжа.

    контрольная работа, добавлен 15.04.2016

  • Описание процесса построения кривой функции распределения, влияние изменения параметров кривой на форму кривой плотности вероятности. Последствия увеличения среднего квадратического отклонения, сущность и особенности нормального распределения Гаусса.

    лабораторная работа, добавлен 08.11.2015

  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа, добавлен 26.12.2012

  • Определение приведенного квадратного уравнения и неполного квадратного уравнения, алгоритмы их решения. Расчет формулы дискриминанта, корней квадратного уравнения и теоремы Виета. Методы решения: разложение на множители, введение новой переменной и др.

    конспект урока, добавлен 08.01.2016

  • Определение связи между вектором входа и векторами состояния и выхода. Примеры получения и преобразования моделей. Определение характеристического уравнения объекта. Расчет эквивалентной матрицы передаточных функций, которая связывает векторы состояния.

    лекция, добавлен 22.07.2015

  • Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.

    курсовая работа, добавлен 13.10.2017

  • Нахождение косинуса угла между векторами при заданных условиях. Схематический чертеж перпендикулярных плоскостей. Приведение к каноническому виду уравнения линий второго порядка. Решение системы линейных уравнений матричным методом и методом Гаусса.

    контрольная работа, добавлен 11.06.2016

  • История открытия общего метода для построения касательной в любой точке кривой. Анализ первой печатной работы Г. Лейбница по дифференциальному исчислению. Дифференциал как бесконечно малое приращение. Определение понятия правой и левой производных.

    презентация, добавлен 25.11.2015

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Вычисление приближенных решений обыкновенного дифференциального уравнения 1 порядка. Вектор решения по методам Эйлера и Рунге-Кутты. Расчет погрешности приближенных решений. Построение графиков, демонстрирующих методы решений ОДУ второго порядка.

    контрольная работа, добавлен 05.12.2013

  • Описание уравнения прямой, проходящей через две точки, общее уравнение плоскости, проходящей через перпендикуляры, опущенные из точки на плоскости. Поиск абсциссы точки пересечения прямой с координатной плоскостью, уравнение касательной к окружности.

    контрольная работа, добавлен 24.09.2018

  • Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.

    лекция, добавлен 14.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.