Сопровождающий трёхгранник кривой
Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.
Подобные документы
Описание графической теории и алгоритма машинного определения кривизны плоской кривой. Дополнительный метод решения инженерных задач через графические вычисления. Определение параметров кривизны (эволюты) эллипса ввиду отсутствия его нулевых точек.
статья, добавлен 03.12.2018Годограф вектор функции. Проекции вектора на оси прямоугольной декартовой системы координат в пространстве. Предел, непрерывность, производная вектор-функции. Правила дифференцирования. Касательная, нормаль к плоской кривой. Кривизна, радиус кривизны.
реферат, добавлен 02.10.2013Исследования локальных свойств плоской кривой. Предельное положение секущей, когда две общие с кривой точки сечения, стремясь друг к другу, совпадут. Применение приема проведения касательной к кривой из точки, заданной вне кривой с помощью кривой ошибок.
курсовая работа, добавлен 23.03.2016Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.
контрольная работа, добавлен 25.04.2017Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.
лекция, добавлен 01.09.2017Первая и вторая квадратичная форма. Построение проекции вектора кривизны линии на нормаль поверхности в точке, через которую проходит эта кривая. Изучение кривизны всех линий на поверхности, рассмотрение плоских сечений. Уравнение индикатрисы Дюпена.
контрольная работа, добавлен 01.09.2017Канонические и параметрические уравнения кривых второго порядка, таких как эллипс, гипербола и парабола, их основные свойства. Приведение уравнения кривой второго порядка к каноническому виду. Уравнения кривых второго порядка в полярных координатах.
методичка, добавлен 06.02.2013Рассмотрение особенностей построения замечательных кривых. Вид уравнения циссиоды Диоклеса в прямоугольной декартовой системе. Определение и построение уравнения кривой лемнискаты Бернулли. Построение уравнений и кривых кардиоиды и овала Кассини.
презентация, добавлен 07.08.2015Строение поверхности вблизи заданной точки. Взаимное расположение кривой и плоскости. Особенности проекции кривой на соприкасающуюся и спрямляющуюся плоскости. Уравнение огибающей семейства плоских кривых. Понятие ортогональной траектории касательной.
лекция, добавлен 01.09.2017Рассмотрение задач, приводящих к понятию производной. Механический и геометрический смысл производной. Уравнение касательной и нормали к плоской кривой. Производные тригонометрической, логарифмической, степенной, сложной функций, высших порядков.
шпаргалка, добавлен 28.05.2015Общая теория кривых второго порядка. Определение зависимости типа кривой от параметра с помощью инвариантов. Определение эксцентриситета, фокусов, директрис, асимптот данной кривой второго порядка. Построение и исследование поверхности второго порядка.
курсовая работа, добавлен 22.04.2011Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.
курсовая работа, добавлен 11.04.2014Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.
контрольная работа, добавлен 29.09.2013Исследование формы данной поверхности методом сечений и построение сечения. Анализ кривой второго порядка. Нахождение фокусов, директрис, эксцентриситета и асимптот данной кривой второго порядка. Вывод уравнения осей канонической системы их координат.
курсовая работа, добавлен 30.10.2010Уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы как частные случаи уравнения. Уравнение окружности в полярных координатах. Каноническое уравнение эллипса. Вывод канонического уравнения гиперболы, ее эксцентриситет.
реферат, добавлен 25.05.2018Уравнения равносторонней и сопряженной гиперболы. Понятия эксцентриситета, директрисы эллипса и гиперболы. Формулы фокальных радиусов. Фокус параболы, ее функция и построение кривой. Теоремы и доказательства. Упрощение общего уравнения второй степени.
лекция, добавлен 29.09.2013Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.
реферат, добавлен 22.05.2012Определение степени уравнения в зависимости от вида 3-ткани. Описание некоторых видов определителей плоской прямолинейной 3-ткани. Построение трехдиагональной гиперболической гиперболы канонического уравнения. Образование плоской прямолинейной 3-ткани.
статья, добавлен 29.07.2017Зависимость типа кривой от параметра с помощью инвариантов: нахождение фокусов, директрис, эксцентриситета и асимптот. Исследование формы поверхности методом сечений и построение полученного. Построение поверхности в канонической системе координат.
курсовая работа, добавлен 19.11.2010Нахождение транспонированной матрицы, приведение её к ступенчатому виду элементарными преобразованиями. Составление уравнения касательной к заданной кривой и перпендикулярной прямой. Характеристика заданной функции, схематичное построение её графика.
контрольная работа, добавлен 18.04.2012Определение уравнения прямой. Расчет координаты точки, уравнения плоскости. Вычисление координаты точки пересечения двух прямых, длины отрезка, отсекаемого от оси абсцисс плоскостью, проходящей через прямую. Анализ формы кривой по заданному уравнению.
контрольная работа, добавлен 29.10.2012Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.
контрольная работа, добавлен 29.04.2019Понятие сферической индикатрисы бинормалей пространственной кривой. Вычисление радиуса-вектора центра соприкасающейся сферы графика. Подсчитывание векторов сопровождающего репера неровности, ее кривизны и закручивания. Характеристика винтовой линии.
контрольная работа, добавлен 25.04.2016Определение координат и модулей векторов, угла между ребрами AB и AC, площади грани ABC, объема пирамиды, угла между прямой AD и плоскостью ABC. Решение уравнения высоты фигуры через вершину A и уравнения прямой, проходящей через определенные точки.
контрольная работа, добавлен 16.11.2011Определение понятия производной. Изучение правил и формул дифференцирования. Анализ геометрического смысла производной. Построение уравнения касательной и нормали к графику функции, угла между ними. Решение планиметрических и стереометрических задач.
курсовая работа, добавлен 14.02.2017