Дискретные случайные величины

Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

Подобные документы

  • Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.

    учебное пособие, добавлен 25.12.2013

  • Математическое ожидание случайной величины. Плотность распределения вероятностей дискретной случайной величины. Функция распределения вероятностей. Дисперсия случайной величины. Кумулянты и характеристическая функция. Сингулярные случайные величины.

    курсовая работа, добавлен 21.05.2016

  • Методы обработки экспериментальных данных. Случайные величины и законы распределения. Основные свойства плотности распределения. Числовые характеристики случайных величин. Кривые распределения с различной степенью крутости. Виды асимметрии распределений.

    курсовая работа, добавлен 11.11.2015

  • Расчет числовых характеристик биноминального распределения. Распределение случайной величины по закону Пуассона. Сопоставление дисперсии случайно величины, распределенной по закону Пуассона, с математическим ожиданием. Нормальный закон распределения.

    лекция, добавлен 18.03.2014

  • Рассмотрение примеров расчета вероятности заданного события. Определение вероятности попадания в мишень, выбора обуви первого и второго сорта, вычисление последней цифры телефона. Изучение закона распределения случайных величин рядом распределения.

    контрольная работа, добавлен 07.01.2014

  • Закон распределения случайной величины. Рассмотрение геометрической интерпретации оси абсцисс. Понятие момента в механике, описание распределения масс. Исследование функции распределения вероятностей. Начальный момент прерывной случайной величины.

    презентация, добавлен 02.05.2020

  • Изучаются копулы, полученные в результате преобразования независимости случайных векторов с распределением Стьюдента, а также для схемы серий зависимых случайных величин, связанных такими IT-копулами, доказаны варианты центральной предельной теоремы.

    статья, добавлен 31.05.2013

  • Поле рассеяния исходных случайных величин. Оценка числовых характеристик для исходных случайных величин. Расчёт оценки плотности распределения вероятностей для исходных случайных величин. Расчёт оптимальной линейной регрессии для случайных величин.

    курсовая работа, добавлен 16.11.2016

  • Содержание и характерные особенности непрерывных случайных величин. Функция и плотность нормального и равномерного распределения. Числовые характеристики случайных величин. Влияние возможных отклонений от допущений при оценке точности решения задач.

    реферат, добавлен 19.07.2010

  • Теорема сложения и умножения вероятностей. Формула Бейеса. Производящая функция. Дискретные случайные величины. Показательное распределение и его числовые характеристики. Статистическое распределение выборки. Криволинейная корреляция. Проверка гипотезы.

    методичка, добавлен 07.06.2012

  • События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.

    курсовая работа, добавлен 21.11.2012

  • Основные теоремы о математическом ожидании, числовых характеристиках случайных величин. Вычисление корреляционного момента. Теоремы о дисперсии случайной величины. Теорема о линейной зависимости случайных величин. Определение коэффициента корреляции.

    лекция, добавлен 18.03.2014

  • Условные законы распределения непрерывных случайных величин, имеющих непрерывное совместное распределение. Условное математическое ожидание случайной величины. Сущность корреляции. Свойства ковариации. Нормальный закон распределения на плоскости.

    реферат, добавлен 26.01.2012

  • Сходимость последовательностей случайных величин и вероятностных распределений. Закон больших чисел. Основные задачи математической статистики, их краткая характеристика. Проверка статистических гипотез: основные понятия. Критерий однородности Смирнова.

    курсовая работа, добавлен 10.06.2013

  • Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.

    методичка, добавлен 16.05.2016

  • Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.

    контрольная работа, добавлен 06.12.2017

  • Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.

    реферат, добавлен 12.12.2013

  • Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.

    реферат, добавлен 19.07.2010

  • Анализ плотности распределения вероятностей суммы m независимых одинаково распределенных случайных величин. Характеристика метода аппроксимации плотности распределения суммы конечного числа независимых случайных величин с одинаковым распределением.

    статья, добавлен 07.03.2019

  • Сущность функции распределения случайной величины и ее свойства, плотность распределения вероятностей. Математическое ожидание случайной величины, его вероятностный смысл и свойства. Критерий согласия Пирсона, дисперсия случайной величины и ее свойства.

    курсовая работа, добавлен 07.02.2016

  • Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

    лекция, добавлен 21.03.2018

  • Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.

    задача, добавлен 05.05.2015

  • Теория вероятности и математическая статистика. Основные категории: событие, вероятность, случайность. Теоремы сложения и умножения. Вероятность гипотез, формула Байеса. Независимые события. Биномиальное распределение. Редкие события, формула Пуассона.

    методичка, добавлен 21.10.2010

  • Ознакомление с графическими методами представления данных и методами биостатистики. Изучение законов распределения дискретных случайных величин: биномиального распределения (Бернулли) и распределения Пуассона. Анализ эмпирических законов распределения.

    реферат, добавлен 10.11.2017

  • Анализ свойств функции распределения случайных величин в зависимости от их вида. Использование непрерывной и дискретной величин в инструментарии таможенной статистики. Показатели рассеяния возможных значений. Свойства математического ожидания и дисперсии.

    курсовая работа, добавлен 12.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.