Дискретные случайные величины
Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.
Подобные документы
- 101. Теория вероятностей
Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013 История понятия случайной величины. Закон больших чисел, расширение проблематики, связанной с ним в работах ученых. Введение математического ожидания и дисперсии в теорию вероятностей. Заложение основ теории случайных процессов на базе физических задач.
реферат, добавлен 29.12.2020Числовые характеристики векторов. Классическое определение вероятности. Случайная величина и функция распределения. Генерирование случайных чисел. Центральная предельная теорема. Выборка и вариационный ряд. Оценка и методы максимального правдоподобия.
учебное пособие, добавлен 22.01.2015Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Сущность, принципы закона распределения, его основные формы. Определение среднего значения (математического ожидания) случайной величины. Центральные моменты распределения случайной величины. Порядок расчета дисперсии и среднеквадратического отклонения.
лекция, добавлен 26.09.2017- 106. Пуассоновская модель
Анализ математических моделей случайных явлений, изучаемых в теории вероятностей и математической статистике. Определение смешанных моментов и кумулянт для многомерных случайных величин. Изучение методов распределения пуассоновски остановленных сумм.
дипломная работа, добавлен 21.06.2016 Свойства плотности распределения вероятностей непрерывной случайной величины. Характеристика особенностей математического ожидания. Основы расчета плотности распределения. Рассмотрение аспектов определения дисперсии и среднего квадратического отклонения.
курсовая работа, добавлен 09.06.2014- 108. Теория вероятностей
Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014 Понятие случайных событий и величин в математической статистике. Основные определения и формулы, отражающие механизм дискретного распределения чисел. Очерк правил решения алгебраических и геометрических примеров со случайными пороговыми значениями.
учебное пособие, добавлен 13.01.2017- 110. Теория вероятностей
Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.
реферат, добавлен 26.02.2010 Гамма-распределения, график функции распределения числа дефектных изделий. Определение квантиля порядка. Распределения Пирсона, Стьюдента, Фишера и Пуассона. Центральная предельная теорема. Экспоненциальные и логарифмически нормальные распределения.
реферат, добавлен 24.11.2010Понятия и определения теории надежности. Основные функции распределения вероятностей случайных величин. Законы распределения времени безотказной работы системы. Марковские процессы в теории надежности. Методы оценки надежности технической составляющей.
учебное пособие, добавлен 28.12.2013Непрерывные случайные числа, функция распределения вероятности. Вычисление математического ожидания функции дискретной случайной величины. Дисперсия и стандартное отклонение. Конфликт между несмещенностью и эффективностью. Среднеквадратичная ошибка.
презентация, добавлен 26.01.2015Особенность применения геометрического определения вероятности. Сущность появления одного из двух несовместимых данных. Характеристика теоремы о сложении возможностей совместных и несовместных событий. Главный анализ изучения умножения случайностей.
практическая работа, добавлен 27.11.2015Знакомство с законом распределения дискретной случайной величины. Общая характеристика таблицы значений эмпирической плотности относительных частот и эмпирической функции распределения. Рассмотрение способов вычисления выборочной средней выборки.
контрольная работа, добавлен 17.03.2016Комплексный анализ непрерывности функции. Возведение числа в степень. Экстремум функции независимых переменных. Статические оценки параметров распределения. Характеристики непрерывных случайных величин. Функция распределения вероятностей и ее свойства.
лабораторная работа, добавлен 15.05.2020Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
лекция, добавлен 26.07.2015Смысл математического ожидания и дисперсии в случае дискретных случайных величин. Вид формул для их нахождения путем замены. Функция распределения непрерывной случайной величины. Расчет плотности вероятности, а также вероятности попадания на участок.
презентация, добавлен 01.11.2013- 119. Случайные события
Вероятность наступления события в каждом из независимых испытаний. Определение математического ожидания, дисперсии, среднего квадратического отклонения дискретной случайной величины по закону её распределения. Вероятность абсолютной величины отклонения.
задача, добавлен 17.01.2015 Формулы схемы Пуассона для нахождения вероятности события. Закон распределения случайной дискретной величины, построение функции распределения. Математическое ожидание, среднее квадратическое отклонение. Проверка гипотезы критерием хи-квадрата Пирсона.
контрольная работа, добавлен 02.03.2017Определение вероятности появления события во множестве независимых опытов. Расчет математического ожидания и дисперсии величины Х. Расчет и построение графика функции распределения. Построение графиков случайных величин, определение плотности вероятности.
контрольная работа, добавлен 21.09.2023Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Использование метода Монте-Карло для решения математических задач при помощи моделирования случайных величин. Способы получения случайных величин. Алгоритмы получения псевдослучайных чисел. Получение псевдослучайных точек методами Неймана и Лемера.
практическая работа, добавлен 26.12.2016Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.
курс лекций, добавлен 02.02.2012Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.
контрольная работа, добавлен 06.11.2012