Решение жестких краевых задач строительной механики (расчет оболочек составных и со шпангоутами) методом Виноградовых (без ортонормирования)
Ю.А. Виноградов - автор метода преодоления трудностей неустойчивого счета путем разделения интервала интегрирования на сопрягаемые участки. Методика расчета оболочек вращения, где каждый участок может выражаться своими дифференциальными уравнениями.
Подобные документы
Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.
контрольная работа, добавлен 14.12.2014Особенности решения задач по расчету процентных денег методом простых и сложных процентов. Линейное уравнение как простейший пример диофантова уравнения. Использование алгебраических уравнений и их систем, решение задач методом линейного программирования.
контрольная работа, добавлен 19.04.2015Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Исследование ключевых вопросов использования интегрального метода идентификации динамического объекта в процессе исследования переходных процессов при произвольном входном воздействии. Определение связи между рассматриваемым методом и методом площадей.
статья, добавлен 30.08.2016Алгебраический симплекс метод. Проверка плана на оптимальность. Определение ведущих столбца и строки. Построение нового опорного плана. Решение задачи линейного программирования на минимум целевой функции. Применение симплексного метода в экономике.
курсовая работа, добавлен 19.06.2012Решение математических задач. Нахождение пиков функции. Вычисление пределов, определенных и неопределенных интегралов; площади фигуры, ограниченной кривыми. Исследование функций дифференциальными методами. Уравнение касательной и нормали к кривой.
контрольная работа, добавлен 10.06.2014Решение дифференциального уравнения численным методом. Исправленный и модифицированный метод Эйлера. Значение метода Эйлера. Описание алгоритма главной программы. Сравнение результатов полученных при использовании программы, а также ручным способом.
контрольная работа, добавлен 20.07.2012Геометрическое понятие и характеристика тел вращения, способы их получения в разных плоскостях, методика расчета площади и объема фигур: конус, цилиндр, шар, многогранники. Принципы определения объема тела с известной площадью поперечного сечения.
реферат, добавлен 16.03.2016Способы решения геометрических задач, рассчитанных на применение аналитических методов. Тенденции использования элементов алгебры и математического анализа при их решении. Методы, приемы и подходы к решению задачи, содержащей буквенные данные (параметры).
статья, добавлен 23.06.2018Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.
презентация, добавлен 02.03.2014Решение нелинейного уравнения методом хорд. Порядок определения корня нелинейного уравнения методом касательных (Ньютона). Особенности применения комбинированного метода хорд и касательных. Построение соответствующих блок-схем и написание текста программ.
контрольная работа, добавлен 29.10.2017Формулировка задачи линейного программирования. Решение задачи методом симплекс-таблиц и симплекс-методом с применением искусственного базиса. Составление программы для нахождения решения задачи линейного программирования методом симплексных таблиц.
курсовая работа, добавлен 21.12.2012Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.
курс лекций, добавлен 22.11.2015Способы дискретизации уравнений механики и принципы построения сетки в области интегрирования. Численное решение уравнений упругости, содержание и закономерности построения соответствующих моделей. Формирование и значение нерегулярной треугольной сетки.
диссертация, добавлен 23.12.2013Решение практических задач математическими методами путем формулировки задачи, выбора метода исследования полученной математической модели, анализа полученного математического результата. Особенности построения и требования к математическим моделям.
реферат, добавлен 03.12.2014Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.
контрольная работа, добавлен 26.12.2011Расчет центра тяжести однородной фигуры, ограниченной линиями. Проверка формулы Грина для интеграла. Исследование рядов на сходимость. Изменение порядка интегрирования, вычисление интеграла. Расчет области сходимости степенного ряда с заданной точностью.
контрольная работа, добавлен 27.06.2017Понятие и классификация динамических систем. Исследование кривых, определяемых дифференциальными уравнениями. Линейный анализ устойчивости динамических систем. Математический анализ бифуркации "двукратное равновесие". "Мягкие" и "жесткие" бифуркации.
курсовая работа, добавлен 03.10.2017Сингулярные интегральные уравнения: решение уравнений ограниченных на обоих концах методом подобластей. Характеристика программы Matchematica. Реализация метода подобластей в программе: метод Гаусса, решение системы линейных алгебраических уравнений.
курсовая работа, добавлен 12.05.2014Приведены результаты эмпирических исследований составных чисел Мерсенна вида Mp=2p–1. Поставлена следующая задача – определить наименьшие простые делители составных чисел Мерсенна. Показаны примеры использования метода факторизации чисел Мерсенна.
статья, добавлен 26.01.2020Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.
задача, добавлен 05.09.2016- 72. Тела вращения
Виды тел вращения. Определение цилиндра, конуса, шара. Нахождение объемов и площадей поверхностей тел вращения: фигуры, формулы расчета и правила. Доказательство теоремы об объёме шара с определенным радиусом. Понятие шарового сегмента и шарового сектора.
презентация, добавлен 12.05.2011 Анализ сущности интервального оценивания. Определение понятия доверительной интервальности. Пример расчета доверительного интервала для заданного параметра нормального распределения. Анализ специфики определения асимптотического доверительного интервала.
презентация, добавлен 21.09.2017Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.
презентация, добавлен 27.05.2014Рассмотрение и характеристика сущности и основных видов текстовых задач. Решение текстовых задач методом составления уравнений. Изучение нестандартных задач в школьном курсе математики. Ознакомление с методикой обучения решения "аномальных" задач.
дипломная работа, добавлен 18.07.2014