Линейные преобразования и геометрия Лобачевского

Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.

Подобные документы

  • Изучение взаимосвязи геометрии и архитектуры. Примеры геометрических зданий с использованием цилиндра, параллелепипеда и пирамиды. Симметрия и дисимметрия, соотношения и пропорции целого и частей в создании пространственно-объемной архитектурной формы.

    презентация, добавлен 10.04.2015

  • История развития фрактальной геометрии. Исследование фракталов в природе и математике, составление программы моделирования сложных неевклидовых объектов, образы которых весьма похожи на природные. Моделирование фракталов на языке программирования.

    научная работа, добавлен 24.09.2013

  • Научная деятельность Ф. Клейна, его биография. Конструирование бутылки Клейна. Первое доказательство непротиворечивости геометрии Лобачевского как одно из важнейших достижений математика. Связь бутылки Клейна с лентой Мёбиуса и проективной плоскостью.

    творческая работа, добавлен 02.03.2019

  • Греческая философия и математика. Возрождение. Философские предпосылки обоснования исчисления бесконечно малых. Неевклидовы геометрии и развитие философии математики в XIX в. Философия в сфере математики, способствующая выработке математического знания.

    реферат, добавлен 08.09.2010

  • Аналитическая геометрия как раздел математики, в котором изучают свойства геометрических объектов средствами алгебры и математического анализа при помощи метода координат. Основные понятия, принципы данного метода, условия его эффективного использования.

    реферат, добавлен 16.03.2016

  • Появление математики как систематической науки и влияние на философское мышление. Философские предпосылки обоснования исчисления бесконечно малых в эпоху Возрождения. Неевклидовы геометрии и развитие философии математики в XIX веке. Математика в XX веке.

    реферат, добавлен 11.09.2010

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).

    курсовая работа, добавлен 31.10.2010

  • Основы геометрии распределения Картана M в проективном пространстве. Теория двойственных линейных связностей, индуцируемых при различных классических оснащениях распределения Картана M. Пути приложения аффинных связностей к изучению сопряженной ткани.

    автореферат, добавлен 17.12.2017

  • Аксиомы полуплоскости и луча: их возможности в построении геометрии. Основная характеристика изучения проблемы Жордана. Особенность смежных и вертикальных углов. Изучение метода равных треугольников, как исторически первого геометрического способа.

    курсовая работа, добавлен 25.10.2015

  • Понятие стереометрии (геометрия в пространстве) как раздела геометрии, изучающего положение, форму, размеры и свойства различных пространственных фигур. Анализ возникновения и развития стереометрии, ее применение в практической деятельности человека.

    статья, добавлен 24.02.2019

  • Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.

    курсовая работа, добавлен 21.05.2012

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Теоретические основы формирования общеучебных умений и навыков. Формирование общеучебных умений и навыков при обучении математики. Конспекты уроков геометрии в 7 классе на тему "Задачи на построение", способствующие формированию общеучебных навыков.

    курсовая работа, добавлен 10.01.2012

  • Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.

    курсовая работа, добавлен 22.04.2011

  • Наука о свойствах геометрических фигур. Что такое геометрия. Геометрия в быту, в архитектуре, в современном дизайне помещений. Природные творения в виде геометрических фигур. Использование геометрических фигур животными. Планиметрия и стереометрия.

    презентация, добавлен 27.09.2012

  • Биография, вклад в развитие механики, физики, астрономии Л. Эйлера — швейцарского, немецкого и российского математика, автора исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.

    реферат, добавлен 26.03.2019

  • Движением в геометрии называется отображение, сохраняющее расстояние. Отображения, образы, композиции отображений. Движение и тождественное отображение как его частный случай. Основные теоремы о задании движений пространства, виды композиций.

    реферат, добавлен 05.03.2009

  • Значение геометрии в практической деятельности человека, история ее развития. Созидательная сила прямого угла. Геометрия в величайших архитектурных сооружениях: Тадж-Махал, египетская пирамида, русские церкви. Применение окружности в строительстве.

    контрольная работа, добавлен 14.05.2011

  • Понятие термина "геометрия", история возникновения и развития. Геометрия Эйнштейна — Минковского. Роль геометрии в естествознании. Термин “площадь” и ее основные измерения. Старые меры площадей. Теоремы площадей фигур и способы решения задач по ним.

    реферат, добавлен 04.12.2008

  • Понятие многогранников в геометрии. Основное определение понятия пирамиды. Определение вершины, ребер, боковых граней пирамиды, ее основания и правила их нахождения. Основные свойства правильной пирамиды, апофемы, усеченной пирамиды и тетраэдра.

    презентация, добавлен 26.04.2011

  • История зарождения системы измерений. Становление геометрии как науки. Определение размера части плоскости, заключенной внутри плоской замкнутой фигуры. Исследование единиц измерения площади. Рассмотрение теорем о площадях фигур и их доказательство.

    реферат, добавлен 02.11.2015

  • Понятие призмы как геометрического тела, ее свойства, сфера применения и способ расчета ее площади. Измерение объемов. Краткий обзор развития геометрии. Симметрия в пространстве. Свойства боковых ребер и поверхностей призмы. Расстояние между плоскостями.

    презентация, добавлен 20.05.2012

  • Предназначение начертательной геометрии, характеристика центральных и параллельных проекций. Описание способов задания плоскости на эпюре. Определение расстояния от точки до плоскости. Взаимное пересечение тел, ограниченных поверхностями вращения.

    учебное пособие, добавлен 07.11.2015

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.

    курсовая работа, добавлен 22.04.2011

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.