Линейные преобразования и геометрия Лобачевского

Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.

Подобные документы

  • Предмет начертательной геометрии. Методы центрального и параллельного проецирования. Точка, прямые и плоскости общего и частного положения на эпюре Монжа. Способы преобразования ортогональных проекций. Классификация поверхностей и многогранники.

    учебное пособие, добавлен 17.12.2014

  • Особенности и описание разработки модели для визуализации трехмерных изображений, её возможные недостатки. Использование моделирования мягких или органических объектов, трехмерного морфинга, обнаружения столкновений и конструктивной твердой геометрии.

    статья, добавлен 29.01.2016

  • Решение системы линейных уравнений с двумя неизвестными методом Крамера. Элементы аналитической геометрии. Пределы функции в точке и на бесконечности. Общая схема исследования функций и построения графиков. Дифференциальные уравнения первого порядка.

    курс лекций, добавлен 30.04.2012

  • Понятие кратных (двойных и тройных) интегралов, криволинейных и поверхностных. Основные определения и формулировки и базовые теоремы Грина, Стокса и Гаусса-Остроградского. Специфика их применения к решению соответствующих задач геометрии и механики.

    учебное пособие, добавлен 22.10.2014

  • Описание общих аксиом конструктивной геометрии и математических инструментов. Правила формулировки задач на построение и методика их решения (методы геометрических мест и преобразований, алгебраический метод). Построения циркулем и иными инструментами.

    курсовая работа, добавлен 24.01.2017

  • Формулировки определений и теорем. Преобразование алгебраических и тригонометрических выражений в технике дифференцирования и интегрирования. Элементы эвристики по Пойа в доказательствах теорем и решениях задач геометрии и математического анализа.

    статья, добавлен 09.11.2018

  • Исследование особенностей фрактальной геометрии и ее приложений. Выявление классификации фракталов. Основные отрасли их применения в жизни человека в условиях новейших технологий. Установление взаимосвязи фрактальных свойств и природных объектов.

    статья, добавлен 15.02.2019

  • Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.

    шпаргалка, добавлен 01.05.2009

  • Повышение общей мотивации к учению при использовании законов геометрии в изучении других предметов, связанных с геометрическими построениями. Особенность решения элементарных задач на построение с помощью использования программы "Живая геометрия".

    статья, добавлен 22.04.2019

  • Рассмотрение новых свойств трехкартинных отображений одномерных объектов в ортогональных проекциях. Последствия совмещения проекционных полей. Рассмотрение аппарата преобразование и примеров практического применения в задачах начертательной геометрии.

    статья, добавлен 14.09.2021

  • Основные понятия геометрии фракталов. Фрактал – множество, обладающее свойством самоподобия, история происхождения. Графическая интерпретация множества Мандельброта. Алгоритм построения пейзажа с помощью фрактала. Определение фрактальной размеренности.

    дипломная работа, добавлен 11.11.2019

  • Первые достижения древних людей в арифметике и геометрии. Цели, принципы, структура и содержание математического образования. Развитие научно-технического прогресса, примеры практического использования математических знаний в инженерной деятельности.

    реферат, добавлен 03.10.2012

  • Аксиома — утверждение, принимаемое без доказательства. Аксиомы принадлежности точек и прямых. Теоремы - утверждения геометрии, которые доказываются на основании аксиом и ранее доказанных утверждений. Аксиомы расположения точек на прямой и плоскости.

    презентация, добавлен 13.04.2012

  • Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.

    курсовая работа, добавлен 16.08.2010

  • Специальные свойства геометрических объектов, изучаемых в дифференциальной геометрии. Определение и применение геодезических линий. Прямолинейные образующие конуса с выколотой вершиной и цилиндра как пример геодезических линий на поверхности; их свойства.

    курсовая работа, добавлен 05.01.2018

  • Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.

    контрольная работа, добавлен 15.06.2011

  • Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Изображение геометрических фигур в параллельной проекции. Методика решения задач на построение. Изучение теоретической основы практической графики. Проективные преобразования.

    курсовая работа, добавлен 09.11.2021

  • Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Учения о тригонометрических величинах. Греческая наука и ионийская школа натурфилософии.

    реферат, добавлен 05.01.2015

  • Метод ортогонального проецирования Г. Монжа. Плоский чертеж как результат совмещения двух плоскостей (проекций) с помощью вращения вокруг общей линии. Необходимость изучения начертательной геометрии и черчения. Описание и понятие комплексного чертежа.

    реферат, добавлен 16.10.2017

  • Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.

    методичка, добавлен 24.03.2015

  • Теорема Чевы и Менелая, их особенности. Методика обучения решению задач в период предпрофильной подготовки. Изучение темы "Теорема Менелая и теорема Чевы" в курсе геометрии 10 класса. Применение теорем Менелая и Чевы в решении стереометрических задач.

    презентация, добавлен 20.01.2016

  • Элементы, свойства и сечения конуса. Исследование вклада школы Платона в развитие геометрии. Великие книги о конических сечениях. Способ вычисления объема геометрической фигуры. Построение прямого конуса. Решение задач на нахождение элементов конуса.

    презентация, добавлен 28.11.2014

  • Изучение основ начертательной геометрии в непосредственной связи с основами технического рисунка, правила выполнения схем, элементов строительного и топографического черчения. Использование электронных вычислительных машин для решения графических задач.

    учебное пособие, добавлен 27.09.2013

  • Использование приема умственной деятельности. Подведение под понятия в обучении студентов 1 курса начертательной геометрии. Осуществление формирования приема подведения под понятие у студентов на примере усвоения прямых параллельных плоскостям проекций.

    статья, добавлен 10.08.2020

  • Характеристика оценки меры иррациональности значений дзета-функции Римана в целых точках. Проведение исследования обобщенного интеграла В.Н. Сорокина с произвольным набором параметров. Особенность применения преобразований к сохранённым массивам.

    статья, добавлен 27.05.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.