Интерполяция многочленами
Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
Подобные документы
Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017Сущность и история разработки метода наименьших квадратов. Примеры решения уравнений в матричном виде по способу наименьших квадратов. Свойства оценок на основе метода наименьших квадратов. Парная линейная и нелинейная регрессия, методы их оценивания.
реферат, добавлен 26.04.2015Рассмотрен метод наименьших квадратов - метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от экспериментальных входных данных. Практическое решение задачи методом наименьших квадратов.
курсовая работа, добавлен 06.12.2023Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.
лекция, добавлен 14.05.2013Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.
статья, добавлен 02.02.2019Полиномы Лежандра и Чебышева: отогональность полиномов и их формирование. Ортогональная система функций, построенная на основе полиномов Чебышева, нормирование системы функций, построенной на их основе. Примеры аппроксимации функций в среде MathCad'а.
курсовая работа, добавлен 09.06.2012Сплайн интерполяция, ее практическое значение. Определение кубического полинома в промежутке между известными узлами. Расчет параметров кубических интерполяционных сплайнов. Группа сопряженных кубических многочленов, в местах сопряжения которых функция.
презентация, добавлен 26.12.2012Метод наименьших квадратов: сущность и основное содержание, особенности использования в решении задачи нахождения одной результирующей прямой и анализе экспериментальных результатов на принадлежность нескольким прямым. Оценка эффективности метода.
доклад, добавлен 07.08.2013Рассмотрение сущности метода наименьших квадратов и линейной парной регрессии. Вывод формул для нахождения коэффициентов линейной парной регрессии. Аппроксимация функций с помощью метода наименьших квадратов. Нахождение параметров линейной функции.
курсовая работа, добавлен 26.02.2020Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.
контрольная работа, добавлен 02.11.2010Поиск экстремума функции одной и нескольких переменных. Интерполяция функций интерполяционными полиномами, способы их вычисления и анализ сходимости (по классическому примеру Рунге). Определение ошибки интерполяции. Построение графиков полиномов Чебышева.
презентация, добавлен 21.09.2013Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.
контрольная работа, добавлен 09.07.2011Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Интерполяционные полиномы Ньютона для равных и неравных интервалов. Сравнение интерполяционных полиномов Лагранжа и Ньютона. Порядок вычисления конечных разностей. Определение эффективного уровня интерполяционного полинома для аппроксимации функции.
лабораторная работа, добавлен 06.11.2021Использование метода наименьших квадратов для отыскания приближенных зависимостей между изучаемыми экспериментальными величинами. Решение уравнений в матричном виде. Нахождение интервальных оценок неизвестных параметров и доверительного интервала.
курсовая работа, добавлен 05.05.2014Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).
контрольная работа, добавлен 25.04.2015Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.
лабораторная работа, добавлен 20.05.2015Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.
реферат, добавлен 20.05.2013Исследование интерполирования функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции. Полиноминальная интерполяция. Интерполяционный полином Лагранжа. Представление гладкой функции.
курсовая работа, добавлен 22.04.2011Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.
контрольная работа, добавлен 11.04.2015Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Особенности определения наличия у обрабатываемых деталей поверхностей сложного профиля. Обзор процесса программирования обработки поверхностей на станках с ЧПУ. Рассмотрение аппроксимации профиля по трем участкам. Оценка применения полиномов Лагранжа.
статья, добавлен 23.03.2018Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
методичка, добавлен 19.09.2017Алгоритм построения интерполяционного кубического сплайна. Разработка программы для интерполяции функции sinx на промежутке [0;П] при равномерном разбиении с удвоением числа отрезков n. Расчет максимальной погрешности, коэффициента ее уменьшения.
курсовая работа, добавлен 23.04.2011