Преобразование функций

Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.

Подобные документы

  • Свойства преобразований Лапласа. Дифференцирование и интегрирование оригинала. Теоремы о начальном и конечном значении. Зависимость выходного сигнала системы от времени при подаче на ее вход некоторого типового воздействия. Импульсная переходная функция.

    курсовая работа, добавлен 13.03.2014

  • Вычисление интегралов в пределах и функциях, нахождение точки пересечения парабол. Разложение подинтегральных выражений на простые дроби и интегрирование по частям, нахождение точки пресечения линий, решения и расчёты функций интегрируемых значений.

    контрольная работа, добавлен 23.04.2012

  • Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.

    курс лекций, добавлен 10.06.2015

  • Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.

    курсовая работа, добавлен 26.05.2015

  • Определение предела последовательности и предела функций в математике. Бесконечно малые и большие функции и их свойства. Предел постоянной величины равен самой постоянной. Вычисление постоянного множителя. Непрерывность функций нескольких переменных.

    презентация, добавлен 02.04.2015

  • Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.

    лекция, добавлен 29.09.2014

  • Особенности решения задачи нахождения интеграла от функции, которая является иррациональной. Методы выполнения подстановок, которые позволяют привести подынтегральное выражение к рациональному виду, более удобному для интегрирования тех или иных функций.

    презентация, добавлен 18.09.2013

  • Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.

    учебное пособие, добавлен 05.04.2011

  • Изучение свойств предела монотонной, ограниченной числовой последовательности. Доказательство того, что если в окрестности точки функция f(x) заключена между двумя (х) и (х), имеющими одинаковый предел, равный А, то функция f(x) имеет тот же предел А.

    презентация, добавлен 21.09.2013

  • Основные понятия функций. Числовая и сходящиеся последовательности. Бесконечный, односторонний, замечательный пределы и пределы на бесконечности. Принцип сходимости, предел функции и теорема Гейне. Непрерывность функции, композиции и точки разрыва.

    реферат, добавлен 17.01.2011

  • Определенные и неопределенные интегралы функций и их свойства. Метод непосредственного интегрирования. Интегрирование элементарных и рациональных дробей, биноминальных дифференциалов. Универсальная тригонометрическая подстановка. Теорема Ньютона-Лейбница.

    курс лекций, добавлен 05.03.2016

  • Изучение поведения функций и построение их графиков как важный раздел математики. Вклад в развитие графиков функций математиков древнего мира. Основные способы задания функций, методы построениях их графиков. Построение графика обратной функции.

    реферат, добавлен 04.12.2014

  • Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.

    методичка, добавлен 16.09.2017

  • Основные свойства и построение графиков степенной, показательной, логарифмической, тригонометрической и обратной тригонометрической функций. Определение элементарных функций, области их определения и значений. Примеры элементарных функций и их свойства.

    курсовая работа, добавлен 30.04.2014

  • Понятие предела последовательности. Характерные примеры вычисления пределов последовательности с подробным разбором решения. Теорема Вейерштрасса и примеры её применения на практике. Вычисление искомого предела, не прибегая к вспомогательным неравенствам.

    курсовая работа, добавлен 07.11.2013

  • Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.

    лекция, добавлен 26.01.2014

  • Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.

    контрольная работа, добавлен 22.12.2015

  • Числовая последовательность, понятие ее предела. Разновидности предела функции, его свойства. Бесконечно большие величины, определение и примеры решения задач. Ограниченная функция. Связь между ограниченной функцией и функцией, имеющей предел.

    лекция, добавлен 05.03.2009

  • Понятие первообразной функции. Теорема о первообразных. Неопределенный интеграл, его свойства. Таблица неопределенных интегралов. Замена переменной и интегрирование по частям в неопределенном интеграле. Разложение дробной рациональной функции на дроби.

    реферат, добавлен 29.06.2008

  • Понятие функций одной переменной, их классификация и разновидности, отличительные особенности и структура. Принципы преобразования графиков. Предел функции на бесконечности и в точке, анализ основных теорем. Непрерывность функции. Типы точек разлома.

    лекция, добавлен 19.02.2018

  • Общее понятие о степенных функциях, их свойства и основные черты. Разновидности графиков степенных функций: прямая, парабола, кубическая парабола, гипербола. Особенности функций с четным и нечетным числом. Преобразования графиков степенных функций.

    презентация, добавлен 02.03.2012

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Краткая биография М.В. Остроградского. Основные труды ученого в сфере математического анализа и механики. Характеристика основных научных достижений М.В. Остроградского в области исследования интегрирования рациональных функций и уравнений динамики.

    презентация, добавлен 07.12.2015

  • Системы линейных уравнений и методы их решения. Определение наибольшего и наименьшего собственных значений итерационным методом. Аппроксимация и интерполяция функций. Численное дифференцирование и интегрирование. Отделение корней нелинейного уравнения.

    курс лекций, добавлен 09.04.2013

  • Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.

    презентация, добавлен 02.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.