Преобразование функций

Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.

Подобные документы

  • Виды графиков линейных функций y=kx+m, y=kx2, y=k/x, у=ax2+bx+c (прямая, парабола, гипербола, объединение двух лучей) и описание их свойств: убывание или возрастание, направленность ветвей, выпуклость, непрерывность, ограниченность сверху или снизу.

    реферат, добавлен 22.01.2012

  • Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.

    курсовая работа, добавлен 15.03.2013

  • Рассмотрение алгоритма полного исследования функции, теоретических результатов по каждому пункту алгоритма. Разбор стандартных примеров исследования функций и построения графиков. Определение особенностей построения параметрически заданных кривых.

    методичка, добавлен 14.09.2015

  • Определение Бохнера для однозначной почти-периодической функции. Описание диагональной последовательности функций. Невозможность выбора равномерно сходящейся подпоследовательности. Доказательство теоремы о сумме многозначных почти-периодических функций.

    статья, добавлен 26.01.2018

  • Предел последовательности. Необходимое условие сходимости бесконечной числовой последовательности. Вычисление предела последовательности. Бесконечно малые последовательности. Связь между бесконечно малыми и сходящимися последовательностями, их свойство.

    контрольная работа, добавлен 03.03.2012

  • Понятие математической функции. Основные элементарные функции. Поиск области определения функций. Предел числовой последовательности, а также функции в бесконечности и точке. Вычисление пределов. Применение бесконечно малых величин к вычислению пределов.

    методичка, добавлен 21.03.2013

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Сущность числовой последовательности, анализ свойств и функций. Геометрическая интерпретация предела последовательности. Теорема сравнения. Основные характеристики функции. Базовые теоремы о пределах. Раскрытие неопределенностей. Замечательные пределы.

    курс лекций, добавлен 23.11.2011

  • Анализ теоретических основ об интеграле от разрывных функций. Изучение признаков сходимости несобственных интегралов. Метод Л.В. Канторовича выделения особенностей. Изучение особенностей решения интегралов от разрывных функций методом Л.В. Канторовича.

    курсовая работа, добавлен 28.04.2019

  • Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.

    курсовая работа, добавлен 09.07.2015

  • Интегрирование однородного линейного уравнения второго порядка с постоянными коэффициентами методом Эйлера. Система линейно независимых решений и определитель Вронского. Применение явления резонанса. Способы гашения нежелательных вынужденных колебаний.

    дипломная работа, добавлен 27.02.2020

  • Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.

    презентация, добавлен 18.09.2013

  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция, добавлен 26.01.2014

  • Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.

    контрольная работа, добавлен 29.01.2013

  • Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.

    реферат, добавлен 17.01.2011

  • Теоретические основы преобразование выражений с помощью дифференциалов. Понятие производной, понятие частной производной. Связь между производной и дифференциалом. Таблица производных основных элементарных функций. Правила дифференцирования функций.

    контрольная работа, добавлен 20.10.2020

  • Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.

    контрольная работа, добавлен 09.04.2016

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.

    презентация, добавлен 17.12.2014

  • Введение в математический анализ. Алгоритм вычисления пределов. Раскрытие неопределенностей. Классификация функций. Непрерывность функции в точке. Дифференциальное исчисление функций одной переменной. Определение и геометрический смысл дифференциала.

    учебное пособие, добавлен 28.08.2017

  • Исследование поведения функций одной переменной, построение графиков. Изучение порядка математических действий по отысканию локального экстремума. Поиск наибольших и наименьших значений непрерывной на отрезке функции. Точки пересечения с осями координат.

    лекция, добавлен 26.01.2014

  • Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.

    лекция, добавлен 10.04.2016

  • Геометрическое определение модуля, обозначение расстояния между точками плоскости. Уравнения, содержащие два и более выражений со знаком модуля, наибольшее целое решение неравенства. Построение графиков функций, разбивание числовой прямой на промежутки.

    реферат, добавлен 29.11.2010

  • Двойной интеграл, его свойства. Алгоритм метода интегральной суммы. Задача о вычислении объема цилиндрического бруса. Вычисление площади круга и леминискаты. Вид уравнения поверхности. Цилиндрические и сферические координаты. Пределы интегрирования.

    лекция, добавлен 18.10.2013

  • Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

    статья, добавлен 09.05.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.