Оценка действий оператора эргатической системы с помощью методов машинного обучения с учителем
Разработка методики оценки действий оператора эргатической системы "Летчик–Самолет" на этапе посадки. Описание методов машинного обучения с учителем: метода опорных векторов и градиентного бустинга деревьев. Тестирование алгоритмов машинного обучения.
Подобные документы
Общая характеристика статьи, описывающей алгоритм рекомендации перемещения метода с помощью машинного обучения. Рассмотрение основных особенностей применения методов машинного обучения для автоматической рекомендации рефакторинга "перемещение метода".
дипломная работа, добавлен 01.12.2019Проблема выбора оптимального метода подбора персонифицированного лечения пациента. Исследование метода взвешенных исходов для анализа выживаемости на выборке пациентов с детским лимфобластным лейкозом. Применение данных для машинного обучения нейросети.
дипломная работа, добавлен 27.08.2016Описание анализа систем распознавания эмоций с применением методов машинного обучения, находящихся в открытом доступе, в рамках курсового проекта по дисциплине Обучающие Технические Системы "Machine Learning". Neurobotics EmoDetect. Cognitive Emotion.
статья, добавлен 14.03.2019Основные понятия и существующие алгоритмы машинного обучения, особенности их применения в информационных системах. Подходы к обработке естественного языка. Вызовы и ограничения применения машинного обучения в информационных системах, его перспективы.
курсовая работа, добавлен 20.05.2023Виды чат-бот приложений с использованием алгоритмов машинного обучения. Характеристика методов оценки, для измерения бизнес-показателей и технических показателей. Снижение загрузки колл-центра. Оценка качества классификации сообщений, интерфейс оператора.
статья, добавлен 29.12.2020Возможность применения машинного обучения при классификации спама. Структура файла "spam". Программный код использования библиотеки pandas, перевода категориальных признаков в числовые. Код тестирования различного количества нейронов, его анализ.
статья, добавлен 17.02.2019Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Разработка и анализ работы алгоритмов для анализа тональности агрессивных комментариев, автоматического определения их эмоционального окраса. Реализация классифицирующих моделей машинного обучения, оценка их качества и сравнение их эффективности.
дипломная работа, добавлен 10.12.2019Изучение современных алгоритмов обнаружения и распознавания лиц на изображении для разработки приложения микро-сервиса для распознавания личности на основе фотографии лица с использованием алгоритмов машинного обучения. Описание процесса разработки.
дипломная работа, добавлен 04.12.2019Исследование методов машинного обучения для автоматического выявления вирусной активности в вычислительных системах. Наивный байесовский подход, методы опорных векторов, ближайших соседей, построения деревьев решений. Искусственные нейронные сети.
дипломная работа, добавлен 23.09.2018Сбор и агрегация исторических данных о регулярных рейсах авиакомпаний. Особенность создания модели машинного обучения для предсказания вероятности отмены маршрута. Характеристика формирования ИТ-сервиса для предоставления доступа к предиктивной модели.
дипломная работа, добавлен 09.08.2018Обучение с учителем и формальная запись задачи классификации. Каскадный классификатор, выбор предметной области и обзор реализаций методов машинного обучения. Мобильные платформы и изучение инструментов разработки. Обучение каскадного классификатора.
дипломная работа, добавлен 11.07.2016Ускорение обработки огромных информационных массивов как одна из основных целей методики обнаружения вредоносного трафика с использованием анализа данных. Особенности настройки гиперпараметров алгоритма, который реализует метод машинного обучения.
статья, добавлен 18.01.2021Возможности применения технологии блокчейн для повышения эффективности работы методов машинного обучения. Тенденции практического применения нейронных сетей и технологии блокчейн. Формирование обучающих выборок, сбор данных распределенными системами.
статья, добавлен 10.05.2022Предсказание трехмерной структуры белка. Предсказание матрицы контактов белка с помощью информации об ограничениях, содержащейся в матрице контактов. Применение моделей машинного обучения XGBoost, CatBoost, Logistic Regression, CNN, ResNet, BiLSTM, LSTM.
дипломная работа, добавлен 25.08.2020Рассмотрение машинного обучения для классификации комментариев в рамках курсового проекта по дисциплине "Machine Learning. Обучающиеся технические системы". Автоматическое определение эмоциональной окраски (позитивный, негативный) текстовых данных.
статья, добавлен 19.02.2019Алгоритмы для решения задачи бинарной классификации. Подготовка данных для создания модели. Разработка предиктивной модели для прогнозирования возможности продажи дополнительных услуг телекоммуникационного оператора с целью решения маркетинговых задач.
дипломная работа, добавлен 27.08.2018Построение модели, определяющей вероятность неплатежеспособности заемщика. Анализ нейросетевого и регрессионного методов оценки платежеспособности заемщика. Разработка программы, реализующей нейросетевой метод оценки кредитоспособности заемщика.
дипломная работа, добавлен 30.07.2016Знакомство с основными проблемами автоматизированного формирования сценариев, описывающих поведение вредоносных программ. Рассмотрение особенностей и способов применения методов машинного обучения для формирования сценариев поведения вредоносных программ.
статья, добавлен 28.08.2016Способ по предсказанию успешности реакции с помощью методов машинного обучения. Модели с использованием методов глубокого обучения, решающие задачи генерации потенциально неуспешных реакций и классификации реакций на успешно проходящие и некорректные.
дипломная работа, добавлен 24.10.2020Решение задачи классификации переводов клиентов банка на легальные и мошеннические с использованием средств машинного обучения. Обнаружение мошеннических транзакций средствами машинного обучения. Решение задачи построения ансамбля классификаторов.
дипломная работа, добавлен 18.07.2020Рассматриваются наиболее актуальные патентные решения в области интеграции машинного обучения в банковские системы противодействия мошенничеству (антифрод-системы). Приведены патентные решения российских, американских, китайских учёных и разработчиков.
статья, добавлен 01.04.2022Исследование задачи машинного обучения. Распознавание на изображении образа кошки. Пример распознавания лиц на Facebook. Пример простейшей схемы нейросети. Пример отображения некоторых архитектур нейросетей. Анализ программ-поисковиков в Интернете.
статья, добавлен 13.03.2019Итерационный метод нахождения локального экстремума (минимума и максимума) функции с помощью движения вдоль градиента. Тестирование стандартного стохастического градиентного спуска как популярного алгоритма для широкого спектра моделей машинного обучения.
курсовая работа, добавлен 12.02.2018Определение распознавания объектов как метода компьютерного зрения для идентификации объектов на изображениях или видео. Рассмотрение алгоритма обнаружения объекта методом машинного обучения и методом глубокого обучения с помощью средств Matlab.
статья, добавлен 24.10.2020