Приложения определенных интегралов
Решение прикладных задач в области геометрии, механики и физики с использованием определённого интеграла. Вычисление площади криволинейной трапеции. Определение объёма тела, полученного вращением плоской фигуры вокруг оси. Нахождение длины дуги кривой.
Подобные документы
Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.
курс лекций, добавлен 23.10.2013Актуальность применения определенного интеграла и его приложений, использование в математике, физике, механике. Решение дифференциальных уравнений практического содержания. Статический момент и координаты центра тяжести плоской кривой, плоской фигуры.
курсовая работа, добавлен 18.03.2015Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.
курсовая работа, добавлен 27.11.2018Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016Изучение сущности определенного интеграла – средства исследования в математике, физике, механике. Определение площади криволинейной трапеции. Ознакомление с функциями определенного интеграла. Рассмотрение геометрического смысла определенного интеграла.
контрольная работа, добавлен 17.01.2015Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
курсовая работа, добавлен 10.07.2017Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени
контрольная работа, добавлен 22.01.2012Нахождение определенных интегралов от функций, первообразные которых не выражаются через элементарные функции. Вывод приближенных формул вычисления определенных интегралов. Формула трапеций и формула парабол (Симпсона), абсолютная величина ее погрешности.
реферат, добавлен 08.03.2010Анализ геометрических задач, приводящих к дифференциальным уравнениям: задача о нахождении кривой наискорейшего спуска и задача о криволинейной трапеции с наибольшей площадью. Решение дифференциального уравнения, описывающее эволюцию некоторого процесса.
статья, добавлен 25.01.2021Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.
контрольная работа, добавлен 25.04.2017История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010- 37. Тела вращения
Тела вращения как тела, возникающие при вращении плоской фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости. Цилиндр и ее тело, заключенное между двумя кругами, расположенными в параллельных плоскостях и цилиндрической поверхностью.
презентация, добавлен 25.05.2015 - 38. Интегралы и ряды
Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.
методичка, добавлен 06.08.2015 Порядок и решение дифференциального уравнения. Интегрирование как процесс нахождения решения дифференциального уравнения. Уравнение с частными производными. Теорема существования и единственности решения дифференциального уравнения первого порядка.
реферат, добавлен 22.05.2014Пространственная кривая векторной функции. Расчет длины дуги полукубической параболы. Изучение функций скалярных уравнений. Объем тела по известной площади поперечного сечения. Изучение поверхности тела вращения. Периметры окружности и длина образующей.
лекция, добавлен 17.01.2014Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.
методичка, добавлен 16.09.2017Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.
контрольная работа, добавлен 12.06.2012Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Неравенства и теорема о среднем. Вычисление с помощью повторного интегрирования. Анализ и практика применения тройных интегралов для расчета координат.
презентация, добавлен 17.09.2013Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
лекция, добавлен 17.01.2014Определение наибольшего и наименьшего значения функции. Расчет площади криволинейной трапеции, объёма тела вращения. Приложение рядов к приближённым вычислениям. Абсолютная и относительная погрешности. Комплексные числа в расчёте физических величин.
практическая работа, добавлен 29.11.2014Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.
контрольная работа, добавлен 16.04.2012Определение координат векторов, которые образуют базис четырехмерного пространства. Нахождение неопределенных интегралов и проверка их дифференцированием. Вычисление площади фигуры, ограниченной графиками функций; абсцессы точек пересечения графиков.
контрольная работа, добавлен 26.11.2012Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.
курсовая работа, добавлен 21.05.2012Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.
практическая работа, добавлен 02.06.2017Применение правила Лопиталя и метода интегрирования. Частный вид наклонной асимптоты. Глобальные и локальные экстремумы. Участки монотонности и точки экстремумов. Определение объема тела вращения вокруг оси абсцисс плоской фигуры, ограниченной кривыми.
контрольная работа, добавлен 02.10.2015