Приложения определенных интегралов

Решение прикладных задач в области геометрии, механики и физики с использованием определённого интеграла. Вычисление площади криволинейной трапеции. Определение объёма тела, полученного вращением плоской фигуры вокруг оси. Нахождение длины дуги кривой.

Подобные документы

  • Нахождение обратной матрицы с помощью правила умножения матриц. Решение системы линейных уравнений с тремя неизвестными методом Крамера. Вычисление координаты точки пересечения медиан, длины высоты, опущенной из вершины, площади заданного треугольника.

    контрольная работа, добавлен 09.02.2015

  • Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Их вычисление с помощью повторного интегрирования. Цилиндрические координаты как соединение полярных в плоскости xy с обычной декартовой аппликатой z.

    реферат, добавлен 12.11.2010

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

  • Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.

    контрольная работа, добавлен 04.11.2012

  • История зарождения системы измерений. Становление геометрии как науки. Определение размера части плоскости, заключенной внутри плоской замкнутой фигуры. Исследование единиц измерения площади. Рассмотрение теорем о площадях фигур и их доказательство.

    реферат, добавлен 02.11.2015

  • Вычисление интегралов в пределах и функциях, нахождение точки пересечения парабол. Разложение подинтегральных выражений на простые дроби и интегрирование по частям, нахождение точки пресечения линий, решения и расчёты функций интегрируемых значений.

    контрольная работа, добавлен 23.04.2012

  • Свойства циклоиды, её геометрическое определение. Площадь и длина дуги арки циклоиды. Объём тела, полученного вращением арки. Таутохронное свойство и применение его для создания наилучшего маятника. Кривые линии до и после интегрального исчисления.

    курсовая работа, добавлен 02.06.2016

  • Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.

    учебное пособие, добавлен 24.08.2012

  • Особенность концепций численного интегрирования. Главная характеристика методов левых, правых и средних прямоугольников. Основной анализ оценки абсолютной погрешности. Примеры применения способов при приближенном вычислении определенных интегралов.

    контрольная работа, добавлен 17.01.2015

  • Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.

    контрольная работа, добавлен 22.08.2014

  • Сравнение и особенности решения сферического треугольника по теореме Лежандра и способом аддитаментов. Вычисление сферического избытка, а также длины дуги меридиана. Методика и основные принципы проведения контрольных вычислений длины дуги меридиана.

    задача, добавлен 17.01.2015

  • Математические модели ряда задач механики сплошных сред, физики и техники, параметры которых резко отличаются в окрестности линии сопряжения. Доказательство единственности решения задачи. Вычисление значения криволинейного интеграла по границе области.

    лекция, добавлен 19.05.2016

  • Рассмотрение эллипса как трехмерной функции, все точки которой лежат в одной плоскости под углом к плоскости круга, для нахождения решения эллиптического интеграла. Образование семейства кривых от окружностей в плоскости. Определение длины дуги эллипса.

    статья, добавлен 03.03.2018

  • Особенности расчета площади поверхности тела, полученного при вращении. Параметры прямоугольного треугольника, его вращение вокруг гипотенузы. Вращение прямоугольной и равнобокой трапеций вокруг большего основания. Использование теоремы Пифагора.

    презентация, добавлен 26.05.2012

  • Описаны примеры решений задач: Расставить пределы интегрирования двумя способами в двойном интеграле. Вычислить двойной, тройной интеграл. Найти площадь области, ограниченной кривыми и объем тела, ограниченного поверхностями. Вычисления по формуле Грина.

    контрольная работа, добавлен 24.04.2014

  • Характеристика интегральных поверхностей первого и второго рода. Определение и вычисление поверхностного интеграла. Основной подсчет статических моментов плоскости относительно координатных плоскостей. Выражение через параметры подинтегральной функции.

    статья, добавлен 12.06.2016

  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа, добавлен 16.05.2019

  • Определение двойного интеграла и его свойства. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат. Определение прямоугольной и произвольной областей интегрирования.

    лекция, добавлен 28.03.2020

  • Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).

    учебное пособие, добавлен 28.12.2013

  • Рассмотрение кривых, имеющихся в полярной системе координат. Определение площади фигуры, ограниченной линиями. Вычисление двойного интеграла в полярной системе координат. Расчет уравнения геометрической окружности с центром в определенной точке.

    контрольная работа, добавлен 05.06.2014

  • Центральная симметрия: определение и её значение. Фигуры, обладающие центральной симметрией и нахождение их центра, прямоугольные трапеции и квадрат, поворот фигур вокруг оси. Примеры симметрии в растениях, значение центральной симметрии в архитектуре.

    презентация, добавлен 13.04.2012

  • Вычисление неопределенного интеграла. Изображение фигуры, ограниченной параболой и прямой, определение её площади. Исследование сходимости степенного ряда на концах интервала. Применение достаточного признака экстремума функции независимых переменных.

    контрольная работа, добавлен 07.04.2017

  • Терминология и свойства тройных интегралов, вычисление с помощью массы неоднородного тела, а также декартовых, цилиндрических и сферических координат. Применение тройных интегралов для расчета координат центра тяжести, инерции и кинетической энергии тела.

    реферат, добавлен 10.11.2010

  • Определение и характеристика производной функции в направлении вектора. Ознакомление с результатами исследования функции на экстремум. Расчет и анализ дискриминанта уравнения и интеграла. Вычисление площади фигуры, ограниченной прямой и параболой.

    контрольная работа, добавлен 28.01.2017

  • Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.

    курсовая работа, добавлен 31.10.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.