Регрессионный анализ

Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.

Подобные документы

  • Задачи корреляционно-регрессионного анализа. Корреляция как возможная связь между двумя или несколькими случайными величинами. Линейная регрессия, а также факторы, формирующие моделируемое явление. Анализ матрицы коэффициентов парных корреляций.

    контрольная работа, добавлен 28.10.2010

  • Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.

    контрольная работа, добавлен 23.05.2021

  • Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".

    статья, добавлен 03.11.2015

  • Рассмотрение элементов в статистике априорных социально-экономических, демографических, медико-биологических и прочих показателей на определенных территориях. Суть факторного анализа в построении регрессионных моделей прогнозирования наркоситуации.

    статья, добавлен 22.05.2017

  • Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.

    контрольная работа, добавлен 11.04.2015

  • Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.

    презентация, добавлен 23.04.2015

  • Результат множественной регрессионного анализа тарифов на размещение рекламы в журналах. Коэффициенты регрессии и уравнение. Прогнозируемые значения функций и переменных. Данные в уравнение прогнозирования исходной совокупности данных в множествах.

    реферат, добавлен 29.09.2013

  • Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.

    статья, добавлен 02.02.2019

  • Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.

    презентация, добавлен 20.01.2015

  • Изучение обработки статистических данных методами корреляционного и регрессионного анализа с использованием пакета "Анализ данных программы Microsoft Excel". Суть регрессионного анализа - метода моделирования измеряемых данных и исследования их свойств.

    курсовая работа, добавлен 10.07.2012

  • Нахождение выборочных коэффициентов ковариации и корреляции. Использование критерия Стьюдента и проверка статистической значимости коэффициента корреляции. Числовые характеристики выборки. Таблица формул для расчета основных выборочных характеристик.

    лабораторная работа, добавлен 14.08.2017

  • Процедура выбора наилучшего регрессионного уравнения, краткий анализ. Метод выбора "наилучшего подмножества" предикторов. Регрессия на главных компонентах, на собственных значениях. Расчет коэффициента детерминации. Средняя ошибка аппроксимации.

    статья, добавлен 02.02.2019

  • Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.

    доклад, добавлен 19.11.2012

  • Моделирование на основе временных рядов. Формальные критерии аппроксимации и статистические гипотезы. Изучение моделей с переменной структурой. Проверка на значимость коэффициентов регрессии. Руководство по использованию программы Time Series Processing.

    методичка, добавлен 26.05.2012

  • Оценка коэффициентов парного уравнения регрессии. Анализ графиков, отражающих зависимости между результативным показателем и факторными признаками. Изображение эллипсов рассеяния. Обзор особенностей заполнения матрицы парных коэффициентов корреляции.

    лабораторная работа, добавлен 11.11.2017

  • Понятие математической модели, ее основные свойства. Описание методов аппроксимации, применяемых для построения регрессионных математических моделей. Обзор основных функций системы MathCad. Алгоритмический анализ задачи и описание функционирования.

    курсовая работа, добавлен 09.12.2013

  • Ошибки коэффициентов уравнений регрессии, анализ остаточной дисперсии. Взаимокоррелирующие аргументы, выбор аргументов в уравнении регрессии при их взаимной корреляции в лесном хозяйстве. Зависимость высоты дерева от качества условий местопроизрастания.

    реферат, добавлен 29.03.2018

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Однофакторный дисперсионный анализ. Построение диаграммы рассеяния и нанесение на нее уравнения регрессии. Особенности применения однофакторного дисперсионного анализа.

    контрольная работа, добавлен 21.10.2017

  • Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.

    практическая работа, добавлен 31.10.2014

  • Характеристика метода наименьших квадратов, применяемого для оценки неизвестных параметров регрессионных моделей по выборочным данным, основанного на минимизации суммы квадратов остатков регрессии. Пример его использования в случае линейной зависимости.

    реферат, добавлен 20.05.2013

  • Проверка гипотезы о нормальном распределении случайных величин по критерию Пирсона, анализ их зависимости. Построение полигона и гистограмм относительных частот. Определение выборочного коэффициента корелляции. Уравнения и графики прямых линий регрессии.

    контрольная работа, добавлен 27.10.2011

  • Рассмотрение метода наименьших квадратов как базового метода оценки неизвестных параметров регрессионных моделей по выборочным данным. Нахождение выборочного уравнения зависимости y от x на основании выборки из четырех наблюдений и построение зависимости.

    контрольная работа, добавлен 27.04.2014

  • История развития и современное понимание статистики. Характеристика видов причинно-следственных связей. Статистическое моделирование связи методом корреляционного и регрессионного анализа на примере взаимосвязи капитала и работающих активов 32 банков.

    курсовая работа, добавлен 29.07.2010

  • Связь параметрической идентификации модели с проведением эксперимента и обработкой экспериментальных зависимостей. Идентификация моделей с помощью регрессионного метода. Достоверность (адекватность) регрессионной модели. Дисперсия адекватности модели.

    контрольная работа, добавлен 27.06.2013

  • Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.

    лабораторная работа, добавлен 01.11.2023

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.